

Tungaloy Report TG0512-D1

DRILLLINE Wendeplattenbohrer TUNGSIX-DRILL

TDS Typ

Wendeplattenbohrer

TungSix-Drill =

Innovativer Wendeplattenbohrer mit doppelseitigen Wendeschneidplatten

Die Tungaloy Corporation hat mit dem neuen TungSix-Drill den weltweit ersten Wendeplattenbohrer mit doppelseitigen Wendeschneidplatten entwickelt.

Dem Endverbraucher wird eine hochwirtschaftliche Bohrbearbeitung ermöglicht, die mit 6 echten Schneidkanten pro Wendeschneidplatte hinsichtlich Leistung keine Kompromisse eingeht.

Der stumpfe Freiwinkel der Zentrumsschneide erhöht die Stabilität, das neuartige Design der Wendeschneidplatte erlaubt eine optimale Positionierung und verhindert Beschädigungen durch bereits abgenutzte Schneidkanten. Die -DJ Spanformstufe verhindert an der Zentrumsschneide Spänestau und der hoch positive Spanwinkel der Außenschneide sorgt für exzellente Spankontrolle. Kombiniert mit den innenliegenden, gedrallten Kühlkanälen und Tungaloys revolutionärer "PremiumTec" Sorte AH9030, die exzellente Verschleißfestigkeit und hohe Oxidationsbeständigkeit liefert, ist der TungSix-Drill die ideale Lösung für die Bohrbearbeitung von Stahl, rostfreiem Stahl und Eisengusswerkstoffen. Erhältlich ist der TungSix-Drill in den Durchmessern 28 mm -54 mm in 1 mm Schritten für Bohrlochtiefen von 2 und 3 x D.

Da Zentrumsschneide und Außenschneide untereinander austauschbar sind, bietet dieses innovative Bohrerkonzept dem Endverbraucher eine vereinfachte Lagerhaltung, da lediglich 1 Ausführung Wendeschneidplatten zu bevorraten ist.

Als weiteres Plus zur Produktivitätssteigerung ist der TungSix-Drill kompatibel mit Tungaloys Anfasringen aus der TDXCF Serie.

TungSix-Drill - der Innovationssprung für gesteigerte Produktivität und niedrige Kosten

Tungaloy

Keeping the Customer First

Mitbewerber

Eigenschaften

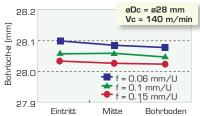
Doppelseitige Wendeschneidplatten mit 6 Schneiden

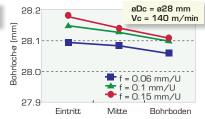
- ► Reduziert Werkzeugkosten
- ► Ermöglicht höhere Schnittgeschwindigkeiten
- ► "C" + "P" = 1 Wendeschneidplatte

Zentrumsschneide "C"

Eine Wendeschneidplatte für beide Plattensitze

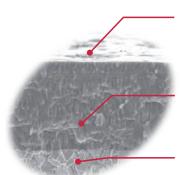
► Vereinfachte Lagerhaltung


Gedrallte Kühlmittelbohrungen



Der TungSix-Drill ermöglicht mit seinen gedrallten Kühlkanälen optimale Spanabfuhr und beste Kühlung sowie Schmierung der Schneidkanten.

Optimale Wendeschneidplatten Positionierung Bohrlochgenauigkeit


TUNGSIX-DRILL

► Exzellente Bohrlochgenauigkeit und Oberflächengüte

Neue revolutionäre Sorte AH9030 PVD beschichtete Sorte

Modernste Beschichtungstechnologie PREMIUMTEC

Glatte, obere Schichtlage für geringe Aufbauschneidenbildung und exzellenten Spanfluß

Neuartige PVD-Beschichtung

Beste Verschleiß- und Oxidationsbeständigkeit

Spezielle Adhäsions-Technologie

- Verfahren zur besseren Adhäsion zwischen Beschichtung und Substrat
- Für drastisch erhöhten Bruch- und Schlagwiderstand

Verstärkte Schneidkante

TUNGSIX-DRILL

Mitbewerber

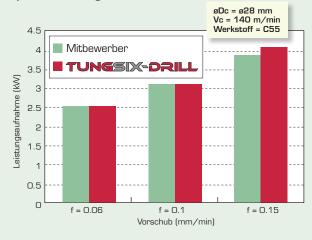
Der negative Freiwinkel der Zentrumsschneide erhöht die Leistung und verhindert Bruch.

Spanformstufen

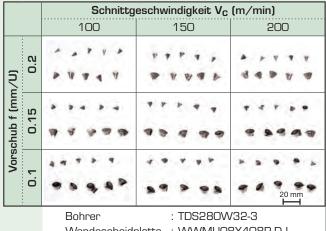
System zur korrekten Klemmung der Wendeschneidplatte

Schnittdaten

An-	Sorten		Substrat		Beschichtung		
wendung	Anwendungs- bereich	Spezifisches Gewicht	Härte (HRA)	Biegebruch Festigkeit (GPa)	Bestandteile	Dicke (µm)	Eigenschaften
P	AH9030						Für Stahl und rostfreien Stahl
Stahl	P20 - P35	14.5	90.8	2.8	(Ti, Al)N	5	Außergewöhnliche Verschleißfestigkeit und Oxidationsbeständigeit bei mittleren bis
M	AH9030	14.5	30.0	2.0	(11, 71)11		hohen Schnittgeschwindigkeiten. PREMIUMTEC Beschichtung verhindert
Rostfreier Stahl	M20 - M35						Aufbauschneidenbildung.


Leistungsvergleich

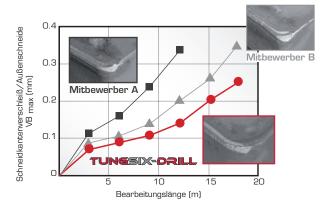
Reduzierte Schnittkräfte


Schnittige Schutzfase reduziert Schnittkräfte auch bei doppelseitigen Wendeschneidplatten

- Sichere SpankontrolleSpäne weisen ideale Form auf

Spindelleistung

Spankontrolle

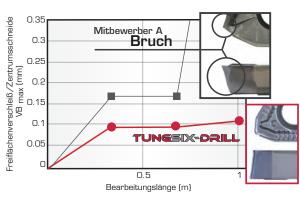

: WWMU08X408R-DJ Wendescheidplatte

: AH9030 Sorte : C45 Werkstoff Werkzeug-ø : ø28 mm Bohrlochtiefe : H = 70 mmMaschine : CNC Drehbank

Kühlung : Emulsion (innere Zufuhr)

Standzeitvergleich

Verschleißfestigkeit AH9030


Bohrer : TDS280W32-3 Wendescheidplatte : WWMU08X408R-DJ

: AH9030 Werkstoff : C55 (ISO) Schnittgeschw. : $V_C = 140 \text{ m/min}$ Vorschub : f = 0.1 mm/U: ø28 mm Werkzeug-ø Bohrlochtiefe : H = 84 mm

: Horizontales BAZ / BT40 Maschine Kühlung : Emulsion (innere Zufuhr)

AH9030 garantiert deutlich höhere Verschleißfestigkeit

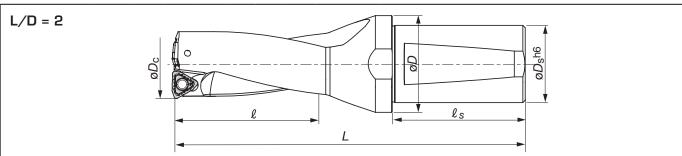
Stabilität Zentrumsschneide

Bohrer : TDS280W32-3 Wendescheidplatte: WWMU08X408R-DJ

: AH9030 Sorte

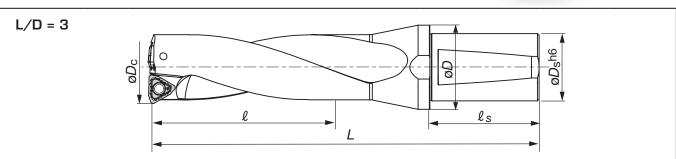
Werkstoff : Werkzeugstahl (40HRC) : $V_C = 100 \text{ m/min}$ Schnittgeschw. Vorschub $: f = 0.08 \, \text{mm/U}$ Werkzeug-ø : ø28 mm Bohrlochtiefe $: H = 28 \, mm$

Maschine : Vertikales BAZ / BT50 Kühlung : Emulsion (innere Zufuhr)


Die robuste Schneidecke verhindert Bruch bei der Bearbeitung von vorgehärtetem Werkzeugstahl

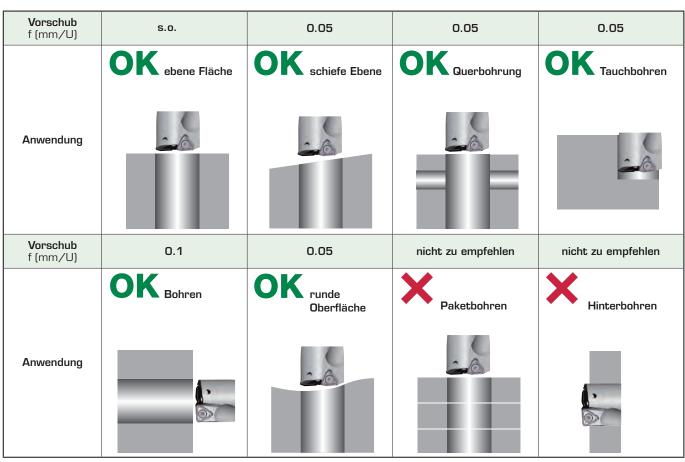
Wendeschneidplatten

-DJ			Sorte	Abm	essur	ngen (mm)		
r_{ε}	5	Artikel Nr.	AH9030	ød	Т	ød1	rε	Bohrer-ø Dc (mm)	
	DØ.	WWMU08X408R-DJ	•	8.0	3.9	3.4	0.8	ø28.0 – ø32.0	
		WWMU09X510R-DJ	•	9.7	4.9	4.4	1.0	ø33.0 – ø38.0	
000000	T	WWMU11X512R-DJ	•	11.3	5.7	5.5	1.2	ø39.0 – ø46.0	
		WWMU13X512R-DJ	•	13.0	J./	5.5	1.6	ø47.0 – ø54.0	


Bohrer

										-		
Artikel Nr.	Lager		Abm	essur	ngen (mm)		Max. Mitten-	Gewicht	Wendeschneidplatte	Spann- schraube	Schlüssel
AI UIKGI TWI	Lago	øDc	øDs	øD	l	ls	L	versatz	(kg)	VVCIIdesoniiciapiasse		
TDS280W32-2	•	28			56		145	1.3	0.6			
TDS290W32-2	•	29			58		148	1.1				
TDS300W32-2	•	30	32	40	60	55	151	0.8	0.7	WWMU08X408R-DJ	CSTB-3	T-9D
TDS310W32-2	•	31			62		154	0.5				
TDS320W32-2	•	32			64		157	0.2	0.8			
TDS330W40-2	•	33			66		170	1.7				
TDS340W40-2	•	34			68		173	1.4	1.2			
TDS350W40-2	•	35			70		176	1.2		WWMU09X510R-DJ	CSTB-4	T-15D
TDS360W40-2	•	36			72		179	0.9		WWWW.CCCXCO TOT PD0		1-130
TDS370W40-2	•	37		50	74		182	0.7	1.3			
TDS380W40-2	•	38			76		185	0.4				
TDS390W40-2	•	39			78		188	2.2	1.4			T-20D
TDS400W40-2	•	40			80		191	1.9			CSTB-5	
TDS410W40-2	•	41			82		194	1.7	1.5			
TDS420W40-2	•	42			84		197	1.5	1.6	WWMU11X512R-DJ		
TDS430W40-2	•	43	40		86	65	200	1.3	1.6	WWWWOTTNOTETPE	0018-0	1-200
TDS440W40-2	•	44		55	88		203	1	1.7			
TDS450W40-2	•	45			90		206	0.7	1.7			
TDS460W40-2	•	46			92		209	0.4	1.8			
TDS470W40-2	•	47			94		212	2.6				
TDS480W40-2	•	48			96		215	2.4	1.9			
TDS490W40-2	•	49			98		218	2.2				
TDS500W40-2	•	50		55	100		221	2	2.0	WWMU13X512R-DJ	CSTB-5	T-20D
TDS510W40-2	•	51			102		224	1.7	2.1	VV VVIVIO I DAO I EM-DU	0010-0	1-200
TDS520W40-2	•	52			104		227	1.5	2.2			
TDS530W40-2	•	53			106		230	1.3	2.3			
TDS540W40-2	•	54			108		233	1	2.4			

TUNGSIX-DRILL

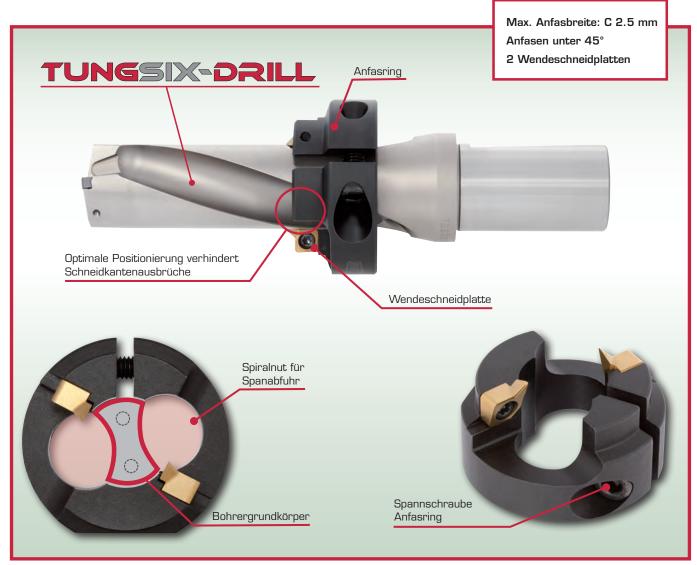

Artikel Nr.	Lager		Abm	essur	ngen (mm)		Max. Mitten-	Gewicht	Wendeschneidplatte	Spann- schraube	Schlüssel
AI LIKEI IVI.	Layer	øDc	øD _S	øD	l	l _s	L	versatz	(kg)	vvenueschneluplatte		
TDS280W32-3	•	28			84		173	1.3	0.7			
TDS290W32-3	•	29			87		177	1.1	0.7			
TDS300W32-3	•	30	32	40	90	55	181	0.8	0.8	WWMU08X408R-DJ	CSTB-3	T-9D
TDS310W32-3	•	31			93		185	0.5	0.6			
TDS320W32-3	•	32			96		189	0.2	0.9			
TDS330W40-3	•	33			99		203	1.7				
TDS340W40-3	•	34			102		207	1.4	1.3			
TDS350W40-3	•	35			105		211	1.2		WWMU09X510R-DJ	CSTB-4	T-15D
TDS360W40-3	•	36			108		215	0.9	1.4	WWWWIDOSAS TON-DU	CS1B-4	
TDS370W40-3	•	37		50	111		219	0.7	1.4			
TDS380W40-3	•	38			114		223	0.4	1.5			
TDS390W40-3	•	39			117		227	2.2	1.6			
TDS400W40-3	•	40			120		231	1.9	1.0			
TDS410W40-3	•	41			123		235	1.7	1.7			
TDS420W40-3	•	42			126		239	1.5	1.8	WWMU11X512R-DJ	CSTB-5	T-20D
TDS430W40-3	•	43	40		129	65	243	1.3	1.0	WWWWITTOTEN-DU	C21R-2	1-200
TDS440W40-3	•	44	40	55	132	03	247	1	1.9			
TDS450W40-3	•	45			135		251	0.7	2.0			
TDS460W40-3	•	46			138		255	0.4	2.1			
TDS470W40-3	•	47			141		259	2.6	2.2			
TDS480W40-3	•	48			144		263	2.4	2.3			
TDS490W40-3	•	49			147		267	2.2	د.ع			
TDS500W40-3	•	50		55	150		271	2	2.4	WWMU13X512R-DJ	CSTB-5	T-20D
TDS510W40-3	•	51		00	153		275	1.7	2.5	AAAAAAA LEU-DJ	G316-3	1-200
TDS520W40-3	•	52			156		279	1.5	2.6			
TDS530W40-3	•	53			159		283	1.3	2.7			
TDS540W40-3	•	54			162		287	1	2.9			

Standard Schnittdaten

Werkstoff	Schnittge- schwindigkeit	Vorschub øDc	f (mm/U)	
STOLKSON.	V _C (m/min)	ø28 – ø32	ø33 – ø54	
Stahl/niedriger Kohlenstoffgehalt (C < 0.3) St42-1, St52-3, C25 etc.	160 - 320	0.04 - 0.10	0.04 - 0.10	
Kohlenstoffstahl (C > 0.3) Ck45, Ck55 etc.	80 - 250	0.06 - 0.15	0.08 - 0.18	
Niedrig legierter Stahl 15CrMo5	160 - 250	0.06 - 0.12	0.06 - 0.14	
Legierter Stahl 42CrMo4, 20Cr4	80 - 200	0.06 - 0.15	0.08 - 0.18	
Rostfreier Stahl (austenitisch) X5CrNi18-9, X5CrNiMo17-12-2 etc. Rostfreier Stahl (ferritisch-martensitisch) X6Cr17, X2OCrS13 etc.	100 - 200	0.04 - 0.12	0.04 - 0.12	
Rostfreier Stahl (Duplex) X5CrNiCuNb16-4 etc.	80 - 120	0.04 - 0.10	0.06 - 0.10	
Grauguss GG25 etc.	80 - 250	0.06 - 0.18	0.08 - 0.20	
Kugelgraphitguss GGG70 etc.	80 - 200	-0.00 - 0.10	0.08 - 0.20	

Anwendungsgebiet

Bei unterbrochenem Schnitt sollte der Vorschub reduziert werden


TDXCF-Serie Anfaswerkzeuge

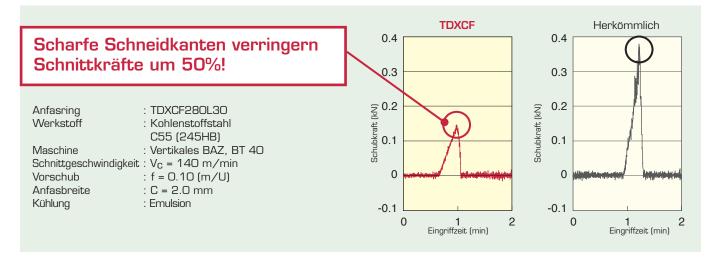
Die TDXCF Serie (Anfasringe und Wendeschneidplatten 45°) ermöglichen das Anfasen unter 45° in einem Arbeitsgang ohne Werkzeugwechsel

- 2 Schneidplatten für höchste Produktivität (TDXCF auch mit nur 1 Wendeschneidplatte einsetztbar)
- Optimale Positionierung der Wendeschneidplatte des Anfasrings lässt ausreichend Abstand zum Bohrkörper und verhindert Schneidkantenbruch

- GH130 = TiCNO beschichtete Sorte
- Geeignet für Stahl, rostfreien Stahl und Eisengußwerkstoffe

Leistungsvergleich

Oberflächengüte



Anfasring : TDXCF280L30
Werkstoff : Kohlenstoffstahl
C55 (245HB)

 $\begin{tabular}{lll} Maschine & : Vertikales BAZ, BT 40 \\ Schnittgeschwindigkeit : $V_C = 140 \ m/min \\ Anfasbreite & : $C = 2.0 \ mm \\ K\begin{tabular}{lll} K\begin{tabular}{lll} blung & : Emulsion \\ \end{tabular}$

Die neue TDXCF Serie erzielt konstante Oberflächengüte

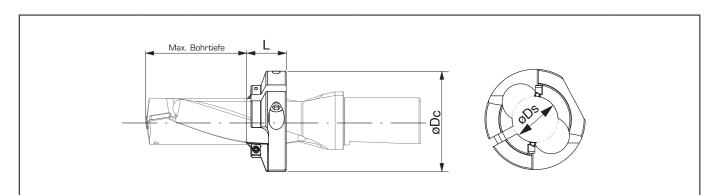
Schnittkraft

Spankontrolle

TDXCF	Herkömmlich
<i></i>	gran.

Anfasring : TDXCF280L30
Werkstoff : Kohlenstoffstahl
C55 (245HB)

 $\begin{tabular}{lll} Maschine & : Vertikales BAZ, BT 40 \\ Schnittgeschwindigkeit : <math>V_C = 140 \ m/min \\ Anfasbreite & : C = 2.0 \ mm \\ Kühlung & : Emulsion \\ \end{tabular}$


Keine Spanumwicklung um Bohrkörper oder Werkstück durch kontinuierliche Spiralspäne

Wendeschneidplatten und Austauschteile

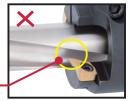
Artikel Nr.	Wendeschneidplatte	Sorte	Spann- schraube	Dreh- moment	Spann- schraube	Dreh- moment	Schlüssel für	Schlüssel für
Al olicor rer.	VVCIIdesormeiapidose	GH130	WSP	(N·m)	Fasring	(N·m)	WSP	Fasring
TDXCF280L30 I TDXCF540L30	XHGX090700R-45A	•	CSPB-4S	3.5	CM8 x 20	8.0	T-15D	P-5

TDXCF Serie Anfasringe

Autilial Nin	Lawan		Abmessur	ngen (mm)		Debuen	Länge	(mm)	
Artikel Nr.	Lager	øDs	øDс	L	Werkzeug- Ø	Bohrer	L/D = 2	L/D = 3	
TDXCF280L30	•	26.9			28	TDS280W32-□	36.9	64.9	
TDXCF290L30	•	27.9			29	TDS290W32-□	39.2	68.2	
TDXCF300L30	•	28.9			30	TDS300W32-	41.5	71.5	
TDXCF310L30	•	29.9	64		31	TDS310W32-□	43.8	74.8	
TDXCF320L30	•	30.9	04		32	TDS320W32-□	46.1	78.1	
TDXCF330L30		31.8			33	TDS330W40-□	48.4	81.4	
TDXCF340L30		32.8			34	TDS340W40-□	50.7	84.7	
TDXCF350L30		33.8				TDS350W40-□	53.0	88	
TDXCF360L30		34.8			36	TDS360W40-□	56.3	92.3	
TDXCF370L30		35.8			37	TDS370W40-□	57.6	94.6	
TDXCF380L30		36.8			38	TDS380W40-□	59.9	97.9	
TDXCF390L30		37.8			39	TDS390W40-□	62.2	101.2	
TDXCF400L30		38.8			40	TDS400W40-□	64.5	104.5	
TDXCF410L30		39.8		30	30	41	TDS410W40-□	66.8	107.8
TDXCF420L30		40.6				42	TDS420W40-□	69.1	111.1
TDXCF430L30		41.6			43	TDS430W40-□	71.4	114.4	
TDXCF440L30		42.6			44	TDS440W40-□	73.7	117.7	
TDXCF450L30		43.6	85		45	TDS450W40-□	76.0	121	
TDXCF460L30		44.6			46	TDS460W40-□	79.3	125.3	
TDXCF470L30		45.6			47	TDS470W40-□	80.6	127.6	
TDXCF480L30		46.6			48	TDS480W40-□	82.9	130.9	
TDXCF490L30		47.6			49	TDS490W40-□	85.2	134.2	
TDXCF500L30		48.6			50	TDS500W40-□	87.5	137.5	
TDXCF510L30		49.6			51	TDS510W40-□	89.8	140.8	
TDXCF520L30		50.6			52	TDS520W40-□	92.1	144.1	
TDXCF530L30		51.6			53	TDS530W40-□	94.4	147.4	
TDXCF540L30		52.6			54	TDS540W40-□	96.7	150.7	

Montageanleitung Anfasring

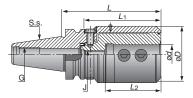
- ① Anfasring auf Bohrer so montieren, dass beide Spankammern passgenau übereinanderliegen. Schrauben leicht anziehen. Die Wendeschneidplatten auf dem Anfasring anbringen und ebenfalls leicht anziehen
- 2 Position des Anfasrings festlegen
- ③ Nun Schrauben des Anfasrings festziehen und anschließend Wendeschneidplatten fest anziehen


Spannkammern passgenau einstellen

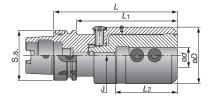
(Wendeschneidplatte ist automatisch richtig positioniert)

Falsche Position des Anfasrings

Spankammern liegen nicht übereinander

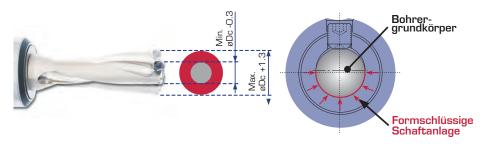

TUNGBORE

Radial verstellbare Aufnahmen für Bohrwerkzeuge


Einfache Durchmesseranpassung des TungSix-Drill Bohrers

Spezifikation

BT/DIN69871 Typ



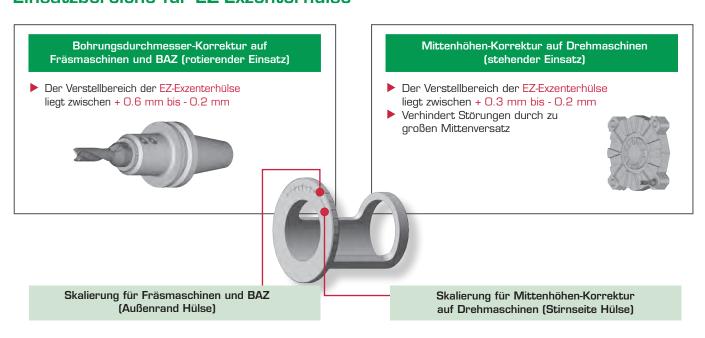
HSK Typ

Artikel Nr.	Logon			Werkzeug-						
Artikei Nr.	Lager	S.s.	ød	øD	L	L1	L2	J	G	Ø
TUNGBORE BT40 EM32	•	40	32.00		123.50				M16	ø28.0 - ø32.0
TUNGBORE BT40 EM40	•	• 40 4			123.30	96.5			IVITO	ø33.0 - ø54.0
TUNGBORE BT50 EM32	•	• 50 3			134.50	90.5			M24	ø28.0 - ø32.0
TUNGBORE BT50 EM40	•				134.30					ø33.0 - ø54.0
TUNGBORE HSK A 63 EM32	•	63	32.00	72.0	142.00		71.0	M10		ø28.0 - ø32.0
TUNGBORE HSK A 63 EM40	•	03	40.00			116.0	71.0	IVITO	_	ø33.0 - ø54.0
TUNGBORE DIN69871 40 EM32		40	32		135.6	110.0			M16	ø28.0 - ø32.0
TUNGBORE DIN69871 40 EM40		40	40		133.0				IVITO	ø33.0 - ø54.0
TUNGBORE DIN69871 50 EM32		50	32		115.6	96.5			M24	ø28.0 - ø32.0
TUNGBORE DIN69871 50 EM40] JU	40		113.0	ال. <i>ن</i> ات			IVIC4	ø33.0 - ø54.0

Lagerstandard

Das Zentrum der Bohreraufnahme besteht aus zwei ineinander laufenden Bohrungen. Die Klemmschraube drückt den Schaft des Bohrers in die präzisere Zentrumsbohrung und bewirkt dadurch eine elastische Verformung des Halters. Daraus resultiert eine formschlüssige Schaftanlage von mehr als 180°, die eine hohe Klemmkraft erzeugt.

TUNGBORE

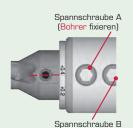

TUNGSIX-DRILL

Einstellbereiche TungSix-Drill kombiniert mit Tungbore

Werkzeug-ø		rer Bereich ım)	Werkzeug-ø		rer Bereich nm)
(mm)	Minø	Maxø	(mm)	Minø	Maxø
28	28	29.3	42	42	43.3
29	29	30.3	43	43	44.3
30	30	31.3	44	44	45.3
31	31	32	45	45	46.3
32	32	32.4	46	46	46.8
33	33	34.3	47	47	48.3
34	34	35.3	48	48	49.3
35	35	36.3	49	49	50.3
36	36	37.3	50	50	51.3
37	37	38.3	51	51	52.3
38	38	38.8	52	52	53.3
39	39	40.3	53	53	54.3
40	40	41.3	54	54	55.3
41	41	42.3			

EZ-Exzenterhülse für TungSix-Drill

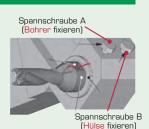
Einsatzbereiche für EZ-Exzenterhülse


Anwendungen der EZ-Exzenterhülse

Bohrungsdurchmesser-Korrektur auf Fräsmaschinen

Nullpunkt der Skalierung auf Höhe der Spannschrauben positionieren

- Um einen größeren Bohrungsdurchmesser zu erzielen. ist die EZ-Exzenterhülse in + Richtung zu drehen. Bei kleinerem Bohrungsdurchmesser in - Richtung
- Im Bild rechts wird die Einstellung zum Erzielen eines Bohrungsdurchmessers von + 0.4 mm verdeutlicht

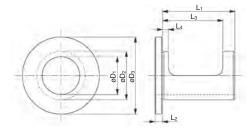


Zum Drehen der EZ-Exzenterhülse den Schlüssel in die dafür vorgesehene Bohrung stecken. Die Spannschrauben A+B müssen hierbei gelöst sein. Mit der Spannschraube A den Bohrer klemmen, Spannschraube B dient zum Fixieren der EZ-Exzenterhülse

Achtung: Schraube B nur leicht anziehen, da ansonsten die Hülse beschädigt wird.

Mittenhöhen-Korrektur

▶ Die Wendeplatten parallel zur X-Achse stellen. Der Nullpunkt der Skalierung muss auf Höhe der Spannschrauben positioniert werden


Im Bild rechts ist die EZ--Hülse in + Richtung um 0.1 mm gedreht, der Zapfendurchmesser wird vergrößert und sollte im Bereich von 0.5 mm liegen

Bemerkungen:

Die EZ-Exzenterhülse kann nicht in Spannhülsen verwendet werden. Bei der Einstellung in den - Bereich kann der Bohrkörper an der Bohrungswand anlaufen. Daher wird beim rotierenden Einsatz eine Einstellung nur in den + Bereich empfohlen.

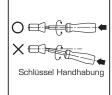
Spezifikation

Artikel Nr.	Lager	øD ₁	øD2	øD ₃	L ₁	L ₂	L ₃	L ₄	Fräsmaschine Bohrungs-ø	Drehmaschine Mittenhöhe
EZ2025	•	20	25	46	49		32.5			
EZ2532	•	25	32	51	52	5	38	4	+ 0.4 bis - 0.2	+ 0.2 bis - 0.15
EZ3240	•	32	40	54	62	J	43	4		
EZ4050	•	40	50	69	63		55		+ 0.6 bis - 0.2	+ 0.3 bis - 0.2

Hinweis TungSix-Drill Ø D₁ entspricht EZ-Exzenterhülse-Ø D₁ Lagerstandard

Hinweise

TungSix-Drill Bohrer

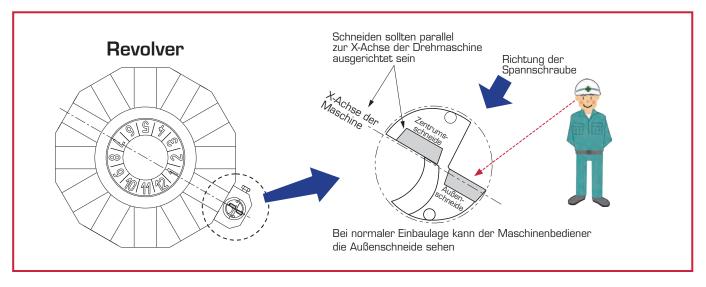

- Das Bearbeitungszentrum muss ausreichend Steifigkeit und Motorleistung aufweisen
- Nicht geeignet für die Bearbeitung von paketgespannten Werkstücken
 Bei der Bearbeitung rotierender Werkstücke ist auf korrekte Einstellung zu achten

Kühlschmierstoffe

- Das Kühlschmiermittel sollte durch die innen liegende Kühlmittelzufuhr zugeführt werden
- Nur wasserlösliche Kühlschmierstoffe einsetzen
- Der Kühlmitteldruck sollte mindestens 10 bar betragen, die Durchflussmenge sollte 7 Liter/min nicht unterschreiten.

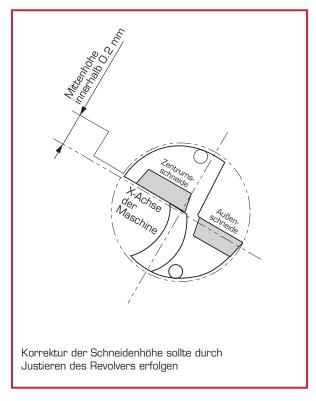
Einsetzen der Wendeschneidplatte

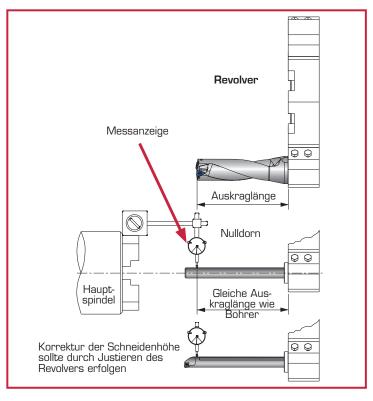
- Vor Einsetzen der Wendeschneidplatte in den Bohrkörper alle Fremdkörper aus dem Wendeplattensitz entfernen
- Spannschlüssel zentriert auf Spannschraube der Wendeschneidplatte ansetzen. Ausrichtungsfehler führen zu Beschädigungen an Spanschraube oder Schlüssel
- Wendeschneidplatte im Plattensitz bündig einsetzen
- Spannschraube rechtzeitig nach langem Einsatz wechseln



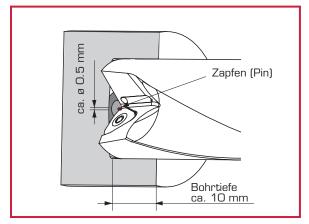
Benutzung des TungSix-Drill auf Drehmaschinen

Korrekte Einstellung des Bohrers ist wichtiger Faktor für stabile Maschinenverhältnisse


Montage auf einer Drehmaschine


- Bohrkörper so einbauen, dass die Schneiden parallel zu X-Achse der Maschine stehen
- Normalerweise ist die Einbaulage so, dass der Maschinenbediener die Außenschneide sehen kann
- Durch Spannen der Spannschraube auf der Spannfläche werden die Schneiden parallel zu X-Achse ausgerichtet

Überprüfung der Schneidenhöhe

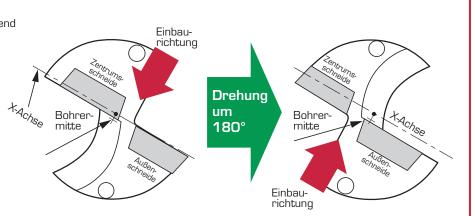

- Die Schneidenhöhe ist ein wichtiger Faktor beim Bohren mit Wendeplattenbohrern
- Die Mittenhöhe des Werkzeugs sollte sich innerhalb von 0.2 mm befinden
- Zur Überprüfung der Mittenhöhe wird ein geschliffener Nulldorn benötigt
- Bei der Überprüfung der Mittenhöhe sollte an der Auskraglänge des Bohrers gemessen werden
- Wenn kein Nulldorn zur Verfügung steht, kann ersatzweise eine geschliffene Bohrstange benutzt werden

Überprüfung der Schneidenmitte mit Versuchsschnitt

- Nach Befestigung des Bohrerkörpers sollte die Untermittigkeit überprüft werden
- Wenn der Bohrerkörper richtig eingestellt ist, ist ein kleiner Zapfen (Pin) von ca. 0.5 mm vorhanden
- Wenn kein Pin vorhanden ist, steht der Bohrer über Mitte. Ist der Pin 1 mm oder größer, steht das Werkzeug unter Mitte und die Werkzeugmitte muss überprüft werden
- Bei Versuchsschnitten sollte der Vorschub 0.1 mm/U oder kleiner sein und es sollte maximal 10 mm tief gebohrt werden

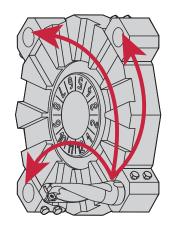
Ausrichten der Schneidenhöhe

1 Bohrer über Mitte

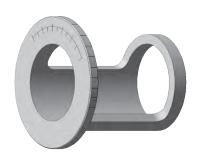

Wenn die Schneidenhöhe unzureichend ist, können folgende Methoden zur Einstellung vorgenommen werden:

Lösung 1:

Spannrichtung ändern


Lösung 2:

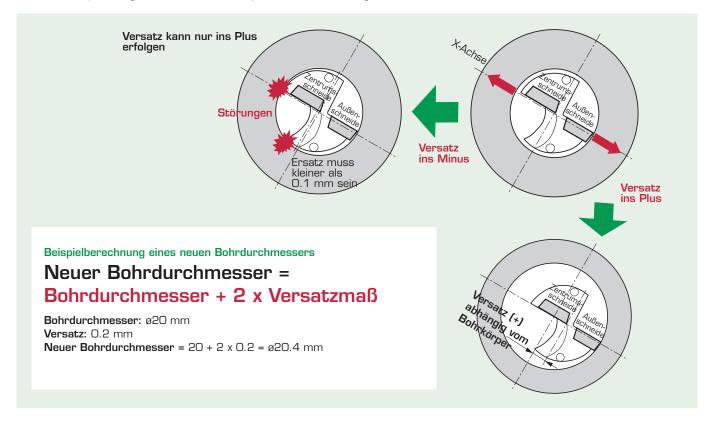
Bohrer um 180° drehen Hier ist eine zweite Spannfläche nötig


2 Bohrer leicht über Mitte (0.05 mm)

Einbauposition im Revolver ändern

3 Bohrer stark unter Mitte (0.2 mm oder mehr)

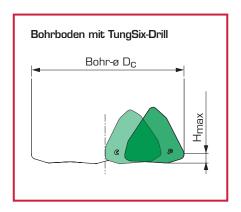
In diesem Fall bleibt der große Durchmesser und starke Vibrationen können auftreten. Um dem gegen zu wirken sollte die EZ-Exzenterhülse zur Mittenhöhen-Korrektur eingesetzt werden. Näheres hierzu siehe Seite 13.



Bohrer mit Versatz auf Drehmaschinen Herstellung von größeren Bohrungen als der Bohrdurchmesser

Bohren mit Versatz

- Wenn der Bohrer in der Drehmaschine eingesetzt wird, kann der Versatz in der X-Achse feinjustiert werden
- Bei der Feinjustierung sollte die Schneidkante parallel zur X-Achse eingestellt werden. "Einbau im Revolver" siehe Seite 15



Unebenheit des Bohrbodens

Die Unebenheit des Bohrbodens bei TungSix-Drill ist geringer als bei von HSS Bohrern gefertigten Bohrböden

Der mit dem TungSix-Drill gefertigte Bohrboden ist nahezu eben, verglichen mit Bohrböden von HSS Bohrern gefertigt.

Bohr-ø D _C (mm)	ø28 – 32	ø33 – 38	ø39 – 46	ø47 – 54
H _{max} (mm)	1.8	2.1	2.5	2.7

Problembeseitigung beim Bohren

	Problem		Ursache	Gegenmaßnahmen
Hoher Verschleiß	Zentrums- schneide	Freifläche	Ungünstige Schnittbedingungen	Schnittgeschwindigkeit um 10% der empfohlenen Schnittbedingungen erhöhen Vorschub um 10% reduzieren
	Außen- schneide	Freifläche	Ungünstige Schnittbedingungen	Schnittgeschwindigkeit um 10% der empfohlenen Schnittbedingungen erhöhen Vorschub verringern
	Allgemein	Freifläche	Art und Zufuhr des Kühlschmierstoffs	Kühlschmierstoffdurchfluss mindestens 7 l/min Kühlschmierstoffkonzentration sollte höher als 5% sein Dünnflüssigeren Kühlschmierstoff verwenden Wechseln von äußerer zu innerer Kühlschmiermittelzufuhr
			Vibrationen	Maschine mit höherer Antriebsleistung wählen Stabilere Werkzeugspannung wählen Bohrereinstellung ändern (Mittenversatz überprüfen)
			Lose Spannschrauben	Spannschrauben anziehen
		Kolk	Zu hohe Zerspantemperatur	Wechseln von äußerer zu innerer Kühlschmiermittelzufuhr Kühlschmierstoffzufuhr erhöhen (mehr als 10 Liter/min.) Vorschub um 20% der empfohlenen Schnittbedingungen reduzieren Schnittgeschwindigkeit um 20% der empfohlenen Schnittbedingungen reduzieren
			Aufbauschneidenbildung	Vorschub um 20% der empfohlenen Schnittbedingungen reduzieren Schnittgeschwindigkeit um 20% der empfohlenen Schnittbedingungen reduzieren
		Spanformstufe	Spänestau	 Schnittgeschwindigkeit um 20% erhöhen und Vorschub um 20% der empfohlenen Schnittwerte reduzieren Kühlmitteldruck erhöhen (größer 15 Bar)
	Zentrums- schneide	Drehzentrum des Bohrers	Mittenversatzeinstellung	Mittenversatz auf 0 - 0.2 mm einstellen
			Zu großer Mittenversatz	Werkzeug Mittenversatz laut Handbuch benutzen
			Raue Werkstückoberfläche	Werkzeugeintrittsfläche vorarbeiten Vorschubwert beim Eintritt auf 0.05 mm/U reduzieren
Ausbrüche			Hoher Vorschub	Vorschub um 20 - 50% gegenüber den empfohlenen Schnittbedingungen reduzieren
			Schneidkantenbruch	● Überprüfung der Schneidkante beim Plattenwechsel
	Außen- schneide	Bohreraußen- bereich	Wendeschneidplatte über Standzeit beansprucht	Schneidkante oder Wendeschneidplatte wechseln bevor Verschleiß 0.3 mm erreicht
			Raue Werkstückoberfläche	Werkzeugeintrittsfläche vorarbeiten Vorschubwert bei Eintritt auf 0.05 mm/U reduzieren
			Ungleichmäßiger Anschnitt	Bei Schnittunterbrechungen Vorschubwert < 0.05 mm/U wählen
pun			Schneidkantenbruch	Überprüfung der Schneidkante beim Plattenwechsel
Rissbildung	Allgemein	Ungebrauchte Schneidkante	Hohe Werkstückhärte	 Schnittgeschwindigkeit um 20% erh\u00f6hen und Vorschub um 20% reduzieren K\u00fchlimitteldruck erh\u00f6hen (gr\u00f6\u00dfer 15 Bar)
Rissbil			Spänestau	Vorschub um 20% der empfohlenen Schnittbedingungen reduzieren
			Geringe Maschinenstabilität	● Vom kontinuierlichen Vorschub zu Intervallvorschub wechseln
		Kontaktlinie	Wendeplatte für Standzeit beansprucht	Schneidkante oder Wendeplatte wechseln bevor Verschleiß O.3 mm erreicht
			Vibrationen	Maschine mit höherer Stabilität wählen Stabilere Werkzeugspannung wählen Bohrereinstellung ändern (Mittenversatz überprüfen)
		Abplatzungen	Hohe Werkstückhärte	● Vorschub < 0.05 mm/U
			Thermische Rissbildung	Wechseln von äußerer zu innerer Kühlschmiermittelzufuhr Vorschub um 20% der empfohlenen Schnittbedingungen reduzieren
		Allgemein	Lose Spannschrauben	Spannschrauben anziehen

	Problem	Ursache	Gegenmaßnahmen
		Rotierendes Werkstück	Mittenversatz auf 0 - 0.2 mm einstellen
Kratz- und Schleifspuren am Werkzeug		Rotationsachse außerhalb Toleranz	Rotationsachse kontrolieren
		Mittenversatz bei reduziertem Werkstück-ø	Werkzeugmittenversatz korregieren
	Werkzeug- umgebung	Unebene Werkzeugeintrittsfläche	Werkzeugeintrittsfläche vorarbeiten Vorschubwert beim Eintritt auf 0.05mm/U reduzieren
		Spanbruch an äußerer Schneidkante	Wendeschneidplatte wechseln
		Instabiles Werkstück	Stabilere Werkzeugspannung wählen
		Spänestau	 Schnittgeschwindigkeit um 20% erhöhen und Vorschub um 20% reduzieren Kühlmitteldruck erhöhen (größer 15 Bar)
igkeit	Bohrloch- durchmeser	Rotierendes Werkstück	Mittenversatz auf 0 - 0.2 mm einstellen
		Rotationsachse ungünstig eingestellt	Rotationsachse kontrolieren
		Unebene Werkzeugeintrittsfläche	Werkzeugeintrittsfläche vorarbeiten Vorschubwert bei Eintritt auf O.05mm/U reduzieren
jenau		Instabiles Werkstück	Stabilere Werkzeugspannung wählen
Geringe Bohrlochgenauigkeit	Rauigkeit	Art und Zufuhr des Kühlschmierstoffs	 Kühlschmierstoffkonzentration sollte höher als 5% sein Dünnflüssigeren Kühlschmierstoff verwenden Wechsel von äußerer zu innerer Kühlmittelzufuhr
le Bol	3	Ungünstige Schnittbedingungen	 Schnittgeschwindigkeit um 20% der empfohlenen Schnittbedingungen erhöhen Vorschub um 20% der empfohlenen Schnittbedingungen reduzieren
ering	Allgemein	Wendeplattenbruch	Wendeschneidplatte wechseln
		Spänestau	 Schnittgeschwindigkeit um 20% erhöhen und Vorschub um 20% reduzieren Kühlmitteldruck erhöhen (größer 15 Bar)
		Lose Spannschrauben	Spannschrauben anziehen
	Lange Wirrspäne	Ungünstige Schnittbedingungen	Empfohlene Schnittbedingungen beachten Schnittgeschwindigkeit und Vorschub um 10% der empfohlenen Schnittbedingungen erhöhen
		Wendeplattenbruch	Wendeschneidplatte wechseln
olle		Äußere Kühlschmierstoffzufuhr	Wechsel von äußerer zu innerer Kühlmittelzufuhr Mit Intervallvorschub arbeiten Haltepunkt ca. 0.1 Sek. halten vor Spanaufwicklung
ankontrolle		Späne an der Zentrumscheide	 Tendenz zu kürzeren Spänen bei erhöhter Schnittgeschwindigkeit und erhöhtem Vorschub
Spank	Cmii	Kühlschmierstoffzufuhr	Wechsel von äußerer zu innerer Kühlmittelzufuhr Kühlmitteldruck erhöhen (größer 15 Bar)
	Spänestau	Ungünstige Schnittbedingungen	 Schnittgeschwindigkeit um 20% erhöhen und Vorschub um 20% reduzieren Kühlmitteldruck erhöhen (größer 15 Bar)
	Allerana sira	Versagen des Spannmittels	Auswechseln der Werkzeugaufnahme
	Allgemein	Lose Spannschrauben	Spannschrauben anziehen
	Rattern	Ungünstige Schnittbedingungen	 Schnittgeschwindigkeit um 20% der empfohlenen Schnittbedingungen reduzieren Vorschub um 10% der empfohlenen Schnittbedingungen erhöhen
		Starker Verschleiß der Wendeplatte	Wendeschneidplatte wechseln
		Vibrationen beim Bohren	 Maschine mit höherer Drehmomentstabilität verwenden Stabilere Werkzeugspannung wählen Bohrereinstellung ändern (Mittenversatz überprüfen)
are Sre		Lose Spannschrauben	Spannschrauben anziehen
Andere		Unzureichende Maschinenleistung und Drehmoment	Maschinenspezifische Drehzahl wählen. Vorschub um 20 - 50% reduzieren
	Maschinen- stillstand	Thermischer Verschleiß	Wendeschneidplatte rechtzeitig wechseln Überprüfen Sie die Kühlmitteldurchflussmenge am Bohrer Schnittgeschwindigkeit und Vorschub um 20% gegenüber den empfohlenen Schnittbedingungen reduzieren
	Gratbildung	Wendeplattenbruch	Wendeschneidplatte wechseln
	g	Ungünstige Schnittbedingungen	Vorschub vor Werkstückaustritt um 20 - 50% reduzieren

Tungaloy Corporation (Zentrale)

11-1 Yoshima-Kogyodanchi Iwaki-City, Fukushima, 970-1144 Japan Tel. +81-246-36-8501, Fax +81-246-36-8542 http://www.tungaloy.co.jp

Tungaloy America, Inc.

3726 N Ventura Drive, Arlington Heights, IL 60004, U.S.A. Tel. +1-888-554-8394, Fax +1-888-554-8392 www.tungalovamerica.com

Tungaloy Canada

432 Elgin St. Unit 3, Brantford, Ontario N3S 7P7, Canada Tel. +1-519-758-5779, Fax +1-519-758-5791 www.tungaloyamerica.com

Tungaloy de Mexico S.A.

C Los Arellano 113, Parque Industrial Siglo XXI Aguascalientes, AGS, Mexico 20290 Tel. +52-449-929-5410, Fax +52-449-929-5411 www.tungaloyamerica.com

Tungaloy do Brazil Comércio de Ferramentas de Corte Ltda.

Rua dos Sabias N.104 13280-000 Vinhedo, São Paulo, Brazil Tel. +55-19-38262757 Fax:+55-19-38262757 www.tungaloy.co.jp/br

Tungaloy Germany GmbH An der Alten Ziegelei 1, D-40789 Monheim, Germany Tel. +49-2173-90420-0, Fax +49-2173-90420-19 www.tungaloy.de

Tungaloy France S.A.S.

ZA Courtaboeuf - Le Rio 1 rue de la Terre de Feu F-91952 Courtaboeuf Cedex, France Tel. +33-1-6486-4300, Fax +33-1-6907-7817 www.tungaloy.fr

Tungaloy Italia S.p.A.

Via E. Andolfato 10 I-20126 Milano, Italy Tel. +39-02-252012-1, Fax +39-02-252012-65 www.tungaloy.co.jp/it

Tungaloy Czech s.r.o

Tuřanka 115 CZ-627 00 Brno, Czech Republic Tel. +420-272652218, Fax 420-234064270 www.tungaloy.co.jp/cz

Tungaloy Ibérica S.L.

C/La Pau, nº 46 E-08243- Manresa (BCN), SPAIN Tel. +34 93 1131360 Fax:+34 93 1131361 www.tungaloy.co.jp/es

Tungaloy Scandinavia AB

S:t Lars Väg 42A SE-22270 Lund, Sweden Tel. +46-462119200, Fax +46-462119207 www.tungaloy.co.jp/se

Tungaloy Rus, LLC

36-G Kostukova str. Belgorod, 308012, Russia Tel. +7-4722 58 57 57, Fax +7-4722 58 57 83 www.tungaloy.co.jp/ru

Tungaloy Polska Sp. z o.o.

ul. Genewska 24 03-963 Warszawa, Poland Tel. +48-22-617-0890, Fax +48-22-617-0890 www.tungaloy.co.jp/pl

Tungaloy U.K. Ltd

Woodgate Business Park, Bartley Green Birmingham B32 3DE, UK Tel. +44 121 244 3064, Fax +44 121 270 9694 www.tungaloy.co.jp/uk, salesinfo@tungaloyuk.co.uk

Tungaloy Cutting Tool (Shanghai) Co.,Ltd. Rm No 401 No.88 Zhabei, Jiangchang No.3 Rd Shanghai 200436, China Tel. +86-21-3632-1880, Fax +86-21-3621-1918 www.tungaloy.co.jp/tcts

Tungaloy Cutting Tool (Thailand) Co.,Ltd.11th Floor, Sorachai Bldg. 23/7, Soi Sukhumvit 63
Klongtonnue, Wattana, Bangkok 10110, Thailand
Tel. +66-2-714-3130, Fax +66-2-714-3134 www.tungaloy.co.th

Tungaloy Singapore (Pte.), Ltd.

50 Kallang Avenue #06-03 Noel Corporate Building Singapore 339505 Tel. +65-6391-1833, Fax +65-6299-4557 www.tungaloy.co.jp/tspl

Tugaloy India Pvt. Ltd.

Unit#13, Bwing, 8th Floor, Kamala Mills Compound Trade World, Lower Parel (West), Mumbai - 4000 13. India Tel. +91-22-6124-8803, Fax +91-226124-8899 www.tungaloy.co.jp/in

Tungaloy Korea Co., Ltd

#1312, Byucksan Digital Valley 5-cha, 60-73 Gasan-dong, Geumcheon-gu 153-788 Seoul, Korea Tel. +82-2-6393-8930, Fax +82-2-6393-8952 www.tungaloy.co.jp/kr

Tungaloy Malaysia Sdn Bhd

50 K-2, Kelana Mall, Jalan SS6/14, Kelana Jaya, 47301 Petaling Jaya, Selangor Darul Ehsan, Malaysia Tel. +603-7805-3222, Fax +603-7804-8563 www.tungaloy.co.jp/my

Tungaloy Australia Pty Ltd Unit 308/33 Lexington Drive Bella Vista NSW 2153, Australia Tel. +612-9672-6844, Fax +612-9672-6866 www.tungaloy.co.jp/au

Ausgehändigt durch:

ISO 9001 certified QC00J0056 Tungaloy Corporation ISO 14001 certified EC97J1123 Tungaloy Group Japan site and Asian production site 26/11/1997

18/10/1996