

Speedy Rail A @ I 0 0 0 0 0 6 00 66 66 66 @ @ @ @

SAB Serie /

Beschreibung SAB



Abb. 1

Bei den Produkten der Baureihe **SAB** handelt es sich um selbsttragende Linearführungen aus stranggepresstem Aluminium, die durch ein System aus Polyurethanriemen angetrieben werden. Dank der harteloxierten Oberflächen und der mit einem Kunststoff-Verbundmaterial beschichteten Rollen zeichnet sich die Baureihe SAB durch außergewöhnliche Leistungen und hohe Tragkräfte aus. Das System ist wartungsfrei und verlangt keine Schmierung. Die Linearführungen sind auch in schmutzigen Arbeitsumgebungen seht zuverlässig und bieten einen einzigartig leisen Betrieb.

Die Baureihe **SAB** umfasst Führungsschienen mit zylindrischen oder V-förmigen Rollen als Komponenten der Linearbewegung. Diese linearen Bewegungssysteme sind leicht, selbsttragend, einfach zu montieren, kostengünstig, modular, sauber und ruhig laufend. Dank dieser Lösung eignet sich diese Lösung speziell für schmutzige Umgebungen und hohe Dynamiken bei der Automatisierung. Die Baureihe SAB umfasst Profile verschiedener Größen: 60 - 120 -180 - 250 mm.

Einige der Hauptvorteile der Baureihe SAB:

- Hohe Zuverlässigkeit
- Selbsttragend f
 ür gr
 ößte Freiheit beim Design
- Hohe technische Leistung
- Hohe Tragzahlen
- Hohe Zuverlässigkeit in schmutzigen Umgebungen
- Keine Schmierung erforderlich
- Einzigartig ruhiger Lauf
- Selbstausrichtendes System

>

Aufbau des Systems

Aluminiumprofil

SAB ist ein Linearführungssystem mit Schienenprofilen mit hohlen Querschnitten aus einer wärmebehandelten Aluminiumlegierung. Dies macht die Schienen hoch belastbar gegen Biege- und Torsionskräfte. Die Schienen werden einer patentierten Behandlung unterzogen, die ihnen eine glatte und gehärtetem Stahl gleichenden Oberfläche und eine optimale Verschleißfestigkeit verleiht, auch in schmutzigen Umgebungen.

Antriebsriemen

Das Antriebssystem der Baureihe SAB besteht aus einem Polyurethan-Zahnriemen, der mit hochfesten Stahlgurten verstärkt ist. Für einige Anwendungen ist die Lösung mit Riemenantrieb aufgrund der hohen Lastübertragungseigenschaften, der kompakten Abmessungen und der geringen Geräuschentwicklung ideal. Einige der Vorteile eines Systems mit Riemenantrieb sind: Hohe Verfahrgeschwindigkeit, hohe Beschleunigung, geringe Geräuschentwicklung und keine Notwendigkeit der Schmierung.

Laufwagen

Der Laufwagen der Lineareinheiten der Baureihe SAB besteht aus eloxiertem Aluminium. Entsprechend den unterschiedlichen Größen sind Laufwagen in verschiedenen Längen erhältlich.

Allgemeine Daten des verwendeten Aluminiums: AL 6060

Chemische Zusammensetzung [%]

Al	Mg	Si	Fe	Mn	Zn	Cu	Verunreinigungen
Rest	0,35-0,60	0,30-0,60	0,30	0,10	0,10	0,10	0,05-0,15

Tab. 1

Physikalische Eigenschaften

Dichte	Elastizitäts- modul	Wärmeausdehnungs- koeffizient (20°-100°C)	Wärmeleitfähigkeit (20°C)	Spezifische Wärme (0°- 100°C)	Spez. Wider- stand	Schmelz temperatur
kg	kN	10-6	W	J	0 400	0.0
dm ³	mm ²	K	m . K	kg . K	Ω . m . 10 ⁻⁹	°C
2,7	69	23	200	880-900	33	600-655

Tab. 2

Mechanische Eigenschaften

Rm	Rp (02)	А	НВ
N — mm²	N — mm²	%	_
205	165	10	60-80

Führungssystem

Das Führungssystem ist ausschlaggebend für die maximal zulässigen Tragzahlen, Geschwindigkeiten und Beschleunigung.

SAB mit zylindrischen oder V-förmigen Rollen:

Das Angebot von SAB umfasst eine große Auswahl an zylindrischen und V-förmigen Rollen sowie Läufer mit zwei oder mehr Rollen. Die SAB-Rollen sind mit einem gesinterten Kunststoff-Verbundmaterial beschichtet, das resistent gegen Schadstoffe und nahezu wartungsfrei ist. In den Rollen sind leistungsfähige Kugel- oder Nadellager installiert, die entweder nach einem Standardverfahren geschmiert werden oder eine Lebensdauerschmierung verfügen. Alle Rollenträger sind mit konzentrischen und exzentrischen Stiften für eine schnelle Einstellung des Kontakts zwischen Rollen und Schiene ausgestattet.

SAB Querschnitt

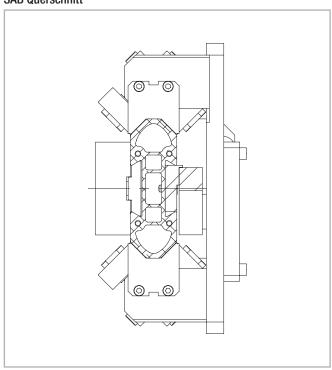
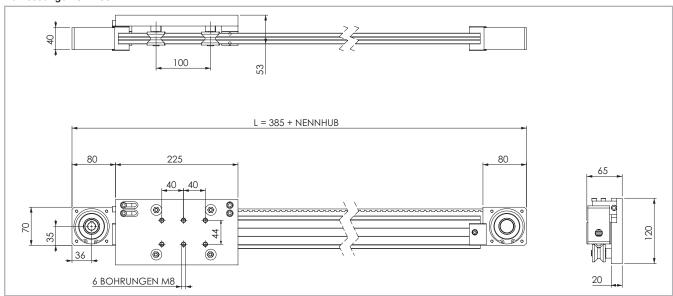



Abb. 2

SAB 60V

Abmessungen SAB 60V

Die Sicherheits-Hublänge wird abhängig von den kundenspezifischen Anforderungen ermittelt

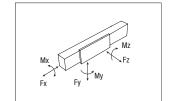
Abb. 3

Technische Daten

	Тур
	SAB 60V
Maximale Hublänge [mm]	6700
Max. Wiederholgenauigkeit [mm]*1	± 0,2
Maximale Geschwindigkeit [m/s]	8
Maximale Beschleunigung [m/s²]	8
Zahnriemen-Typ	10 AT 10
Typ Zahnriemenscheibe	Z 19
Riemenscheibendurchmesser [mm]	60.479
Laufwagenhub je Umdrehung Zahnriemenscheibe [mm]	190
Gewicht des Laufwagens [kg]	1,7
Gewicht Hub Null [kg]	3,8
Gewicht je 100 mm Hub [kg]	0,13
Schienengröße [mm]	60x20

 $^{^{\}star}$ 1) Die Wiederholgenauigkeit ist abhängig von der verwendeten Antriebsart

Flächenträgheitsmomente der Aluminiumprofile


Тур	l _x [10 ⁷ mm⁴]	l _y [10 ⁷ mm⁴]	 [10 ⁷ mm ⁴]
SAB 60V	138.600	18.000	29.000
			Tab. 5

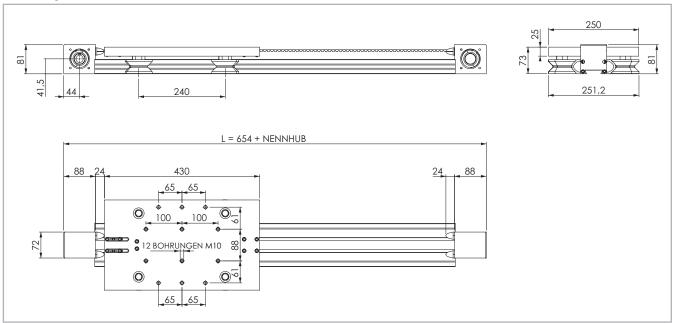
Antriebsriemen

Der Antriebsriemen besteht aus abriebfestem stahlverstärktem Polyurethan für hohe Zugkräfte.

Тур	Riemen-	Riemenbreite	Gewicht	
	typ	[mm]	kg/m	
SAB 60V	10 AT 10	10	0,064	

Tab. 6

SAB 60V - Tragzahlen


Тур	F _.	F _,	F _z	M _x	M _y	M _z
	[N]	[N]	[N]	[Nm]	[Nm]	[Nm]
SAB 60V	706	540	400	9	20	27

Tab. 4

Nicht-kumulative Trägheitsmomente bezüglich der Laufwagen-Mittelachse und der theoretischen Lebensdauer der Führungsschiene "Speedy Rail" und der Rollen bis zu 80.000 km.

SAB 120VX

Abmessungen SAB 120VX

Die Sicherheits-Hublänge wird abhängig von den kundenspezifischen Anforderungen ermittelt

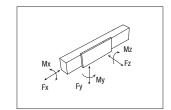
Abb. 4

Technische Daten

	Тур
	SAB 120VX
Maximale Hublänge [mm]	7020
Max. Wiederholgenauigkeit [mm]*1	± 0,2
Maximale Geschwindigkeit [m/s]	8
Maximale Beschleunigung [m/s²]	8
Zahnriemen-Typ	25 AT 10HPF
Typ Zahnriemenscheibe	Z 15
Riemenscheibendurchmesser [mm]	47.746
Gewicht des Laufwagens [kg]	7,6
Gewicht Hub Null [kg]	16,4
Gewicht je 100 mm Hub [kg]	0,472
Schienengröße [mm]	120x40
*1) Die Wiederholgenauigkeit ist abhängig von der verwendeten Antriebsart	Tab. 8

 $^{^{\}star}$ 1) Die Wiederholgenauigkeit ist abhängig von der verwendeten Antriebsart

Flächenträgheitsmomente der Aluminiumprofile

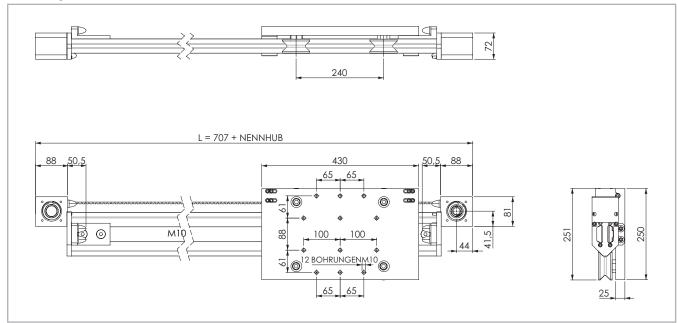

Тур	_x [10 ⁷ mm ⁴]	_y [10 ⁷ mm ⁴]	l _p [10 ⁷ mm⁴]
SAB 120VX	2.138.988	259.785	430.000
			Tab. 9

Antriebsriemen

Der Antriebsriemen besteht aus abriebfestem stahlverstärktem Polyurethan für hohe Zugkräfte.

Тур	Riementyp	Riemenbreite [mm]	Gewicht kg/m
SAB 120VX	25 AT 10HPF	25	0,16

Tab. 10


SAB 120VX - Tragzahlen

Тур	F _x	F _y	F _z	M _x	M _y	M _z
	[N]	[N]	[N]	[Nm]	[Nm]	[Nm]
SAB 120VX	1349	1400	800	39.32	96	168

Nicht-kumulative Trägheitsmomente bezüglich der Laufwagen-Mittelachse und der theoretischen Lebensdauer der Führungsschiene "Speedy Rail" und der Rollen bis zu 80.000 km.

SAB 120VZ

Abmessungen SAB 120VZ

Die Sicherheits-Hublänge wird abhängig von den kundenspezifischen Anforderungen ermittelt

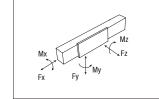
Abb. 5

Technische Daten

	Тур
	SAB 120VZ
Maximale Hublänge [mm]*1	6990
Max. Wiederholgenauigkeit [mm]*2	± 0,2
Maximale Geschwindigkeit [m/s]	8
Maximale Beschleunigung [m/s²]	8
Zahnriemen-Typ	25 AT 10HPF
Typ Zahnriemenscheibe	Z 15
Riemenscheibendurchmesser [mm]	47.746
Laufwagenhub je Umdrehung Zahnriemenscheibe [mm]	150
Gewicht des Laufwagens [kg]	7,8
Gewicht Hub Null [kg]	16,60
Gewicht je 100 mm Hub [kg]	0,472
Schienengröße [mm]	120x40
1) Durch Verwendung spezieller Rollon-Verbindungen können längere Hübe erreicht werden.	Tab. 12

^{*1)} Durch Verwendung spezieller Rollon-Verbindungen können längere Hübe erreicht werden.
*2) Die Wiederholgenauigkeit ist abhängig von der verwendeten Antriebsart

Flächenträgheitsmomente der Aluminiumprofile

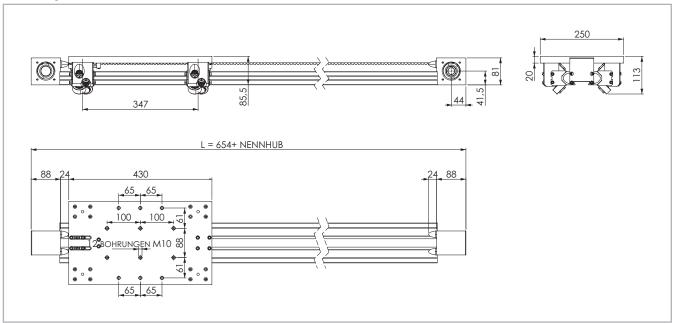

Тур	l _x [10 ⁷ mm⁴]	l _y [10 ⁷ mm⁴]	I _p [10 ⁷ mm⁴]
SAB 120VZ	2.138.988	259.785	430.000
			Tab. 13

Antriebsriemen

Der Antriebsriemen besteht aus abriebfestem stahlverstärktem Polyurethan für hohe Zugkräfte.

Тур	Riementyp	Riemenbreite [mm]	Gewicht kg/m
SAB 120VZ	25 AT 10HPF	25	0,16

Tab. 14


SAB 120VZ - Tragzahlen

Тур	F _x	F _y	F _z	M _x	M _y	M _z
	[N]	[N]	[N]	[Nm]	[Nm]	[Nm]
SAB 120VZ	1349	1400	800	39.32	96	168

Nicht-kumulative Trägheitsmomente bezüglich der Laufwagen-Mittelachse und der theoretischen Lebensdauer der Führungsschiene "Speedy Rail" und der Rollen bis zu 80.000 km.

SAB 120CX

Abmessungen SAB 120CX

Die Sicherheits-Hublänge wird abhängig von den kundenspezifischen Anforderungen ermittelt

Abb. 6

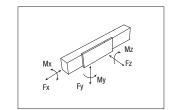
Technische Daten

	Тур
	SAB 120CX
Maximale Hublänge [mm]	7022
Max. Wiederholgenauigkeit [mm]*1	± 0,2
Maximale Geschwindigkeit [m/s]	15
Maximale Beschleunigung [m/s²]	10
Zahnriemen-Typ	25 AT 10HPF
Typ Zahnriemenscheibe	Z 15
Riemenscheibendurchmesser [mm]	47.746
Laufwagenhub je Umdrehung Zahnriemenscheibe [mm]	150
Gewicht des Laufwagens [kg]	8,5
Gewicht Hub Null [kg]	17,3
Gewicht je 100 mm Hub [kg]	0,472
Schienengröße [mm]	120x40
*1) Die Wiederholgenauigkeit ist abhängig von der verwendeten Antriebsart	Tab. 16

^{*1)} Die Wiederholgenauigkeit ist abhängig von der verwendeten Antriebsart

Flächenträgheitsmomente der Aluminiumprofile

Тур	l _x	l _y	l _p
	[10 ⁷ mm⁴]	[10 ⁷ mm⁴]	[10 ⁷ mm⁴]
SAB 120CX	2.138.988	259.785	430.000

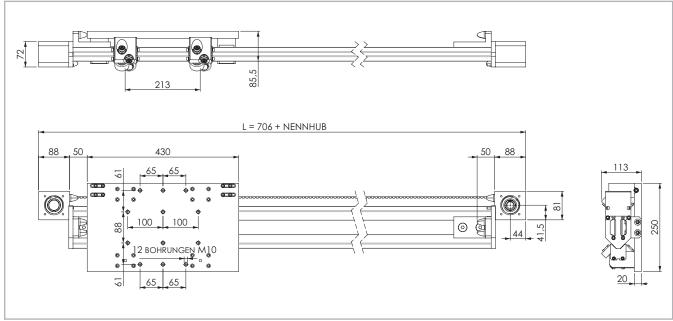

Tab. 17

Antriebsriemen

Der Antriebsriemen besteht aus abriebfestem stahlverstärktem Polyurethan für hohe Zugkräfte.

Тур	Riementyp	Riemenbreite [mm]	Gewicht kg/m
SAB 120CX	25 AT 10HPF	25	0,16

Tab. 18


SAB 120CX - Tragzahlen

Тур	F _x	F _y	F _z	M _x	M _y	M _z
	[N]	[N]	[N]	[Nm]	[Nm]	[Nm]
SAB 120CX	1349	2489	2489	98	432	432

Nicht-kumulative Trägheitsmomente bezüglich der Laufwagen-Mittelachse und der theoretischen Lebensdauer der Führungsschiene "Speedy Rail" und der Rollen bis zu 80.000 km.

SAB 120CZ

Abmessungen SAB 120CZ

Die Sicherheits-Hublänge wird abhängig von den kundenspezifischen Anforderungen ermittelt

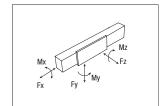
Abb. 7

Technische Daten

	Тур
	SAB 120CZ
Maximale Hublänge [mm]*1	7020
Max. Wiederholgenauigkeit [mm]*2	± 0.2
Maximale Geschwindigkeit [m/s]	15
Maximale Beschleunigung [m/s²]	10
Zahnriemen-Typ	25 AT 10HPF
Typ Zahnriemenscheibe	Z 15
Riemenscheibendurchmesser [mm]	47.746
Laufwagenhub je Umdrehung Zahnriemenscheibe [mm]	150
Gewicht des Laufwagens [kg]	8.7
Gewicht Hub Null [kg]	17.5
Gewicht je 100 mm Hub [kg]	0.472
Schienengröße [mm]	120x40
*1) Durch Verwendung spezieller Rollon-Verbindungen können längere Hübe erreicht werden	Tab. 20

^{*1)} Durch Verwendung spezieller Rollon-Verbindungen können längere Hübe erreicht werden.
*2) Die Wiederholgenauigkeit ist abhängig von der verwendeten Antriebsart

Flächenträgheitsmomente der Aluminiumprofile

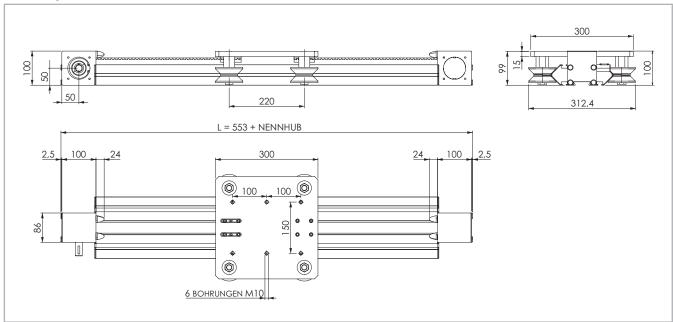

Тур	_x [10 ⁷ mm ⁴]	l _y [10 ⁷ mm⁴]	l _p [10 ⁷ mm⁴]
SAB 120CZ	2.138.988	259.785	430.000
			Tab. 21

Antriebsriemen

Der Antriebsriemen besteht aus abriebfestem stahlverstärktem Polyurethan für hohe Zugkräfte.

Тур	Riementyp	Riemenbreite [mm]	Gewicht kg/m
SAB 120CZ	25 AT 10HPF	25	0,16

Tab. 22


SAB 120CZ - Tragzahlen

Тур	F _x	F _y	F _z	M _x	M _y	M _z
	[N]	[N]	[N]	[Nm]	[Nm]	[Nm]
SAB 120CZ	1349	2489	2489	98	265	265

Nicht-kumulative Trägheitsmomente bezüglich der Laufwagen-Mittelachse und der theoretischen Lebensdauer der Führungsschiene "Speedy Rail" und der Rollen bis zu 80.000 km.

SAB 180V

Abmessungen SAB 180V

Die Sicherheits-Hublänge wird abhängig von den kundenspezifischen Anforderungen ermittelt

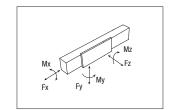
Abb. 8

Technische Daten

	Тур
	SAB 180V
Maximale Hublänge [mm]	7150
Max. Wiederholgenauigkeit [mm]*1	± 0,2
Maximale Geschwindigkeit [m/s]	8
Maximale Beschleunigung [m/s²]	8
Zahnriemen-Typ	32 AT 10HPF
Typ Zahnriemenscheibe	Z 18
Riemenscheibendurchmesser [mm]	57,3
Laufwagenhub je Umdrehung Zahnriemenscheibe [mm]	180
Gewicht des Laufwagens [kg]	7
Gewicht Hub Null [kg]	26,3
Gewicht je 100 mm Hub [kg]	1,06
Schienengröße [mm]	180x60
*1) Die Wiederholgenauigkeit ist abhängig von der verwendeten Antriebsart	Tab. 24

^{*1)} Die Wiederholgenauigkeit ist abhängig von der verwendeten Antriebsart

Flächenträgheitsmomente der Aluminiumprofile

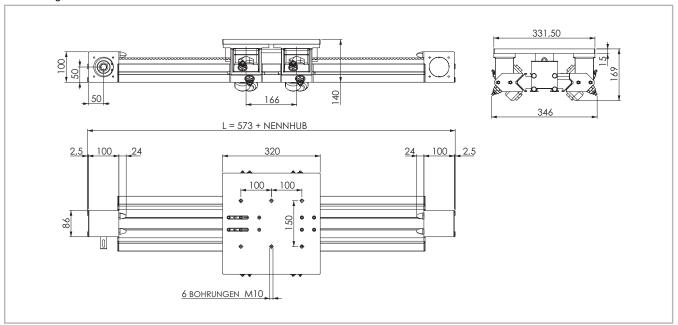

Тур	l _x [10 ⁷ mm⁴]	l _y [10 ⁷ mm⁴]	l _p [10 ⁷ mm⁴]
SAB 180V	10.291.100	1.278.700	2.600.000
			Tab. 25

Antriebsriemen

Der Antriebsriemen besteht aus abriebfestem stahlverstärktem Polyurethan für hohe Zugkräfte.

Тур	Riementyp	Riemenbreite [mm]	Gewicht kg/m
SAB 180V	32 AT 10HPF	32	0,205

Tab. 26


SAB 180V - Tragzahlen

Тур	F	F _y	F _z	M _x	M _y	M _z
	[N]	[N]	[N]	[Nm]	[Nm]	[Nm]
SAB 180V	2125	1400	800	58	88	154

Nicht-kumulative Trägheitsmomente bezüglich der Laufwagen-Mittelachse und der theoretischen Lebensdauer der Führungsschiene "Speedy Rail" und der Rollen bis zu 80.000 km.

SAB 180C

Abmessungen SAB 180C

Die Sicherheits-Hublänge wird abhängig von den kundenspezifischen Anforderungen ermittelt

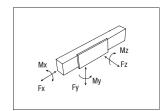
Abb. 9

Technische Daten

	Тур
	SAB 180C
Maximale Hublänge [mm]	7130
Max. Wiederholgenauigkeit [mm]*1	± 0,2
Maximale Geschwindigkeit [m/s]	15
Maximale Beschleunigung [m/s²]	10
Zahnriemen-Typ	32 AT 10HPF
Typ Zahnriemenscheibe	Z 18
Riemenscheibendurchmesser [mm]	57,3
Laufwagenhub je Umdrehung Zahnriemenscheibe [mm]	180
Gewicht des Laufwagens [kg]	11,46
Gewicht Hub Null [kg]	26,3
Gewicht je 100 mm Hub [kg]	1,06
Schienengröße [mm]	180x60
*1) Die Wiederholgenauigkeit ist abhängig von der verwendeten Antriebsart	Tab. 28

^{*1)} Die Wiederholgenauigkeit ist abhängig von der verwendeten Antriebsart

Flächenträgheitsmomente der Aluminiumprofile

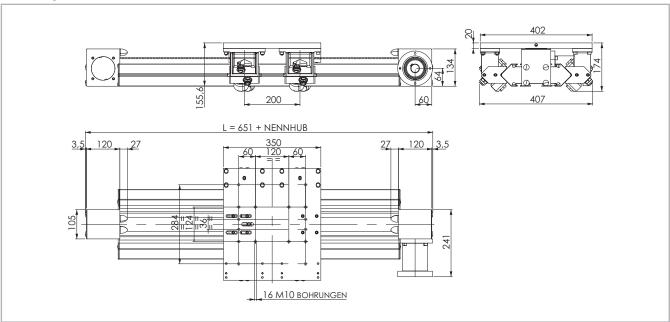

Тур	l _x [10 ⁷ mm⁴]	_y [10 ⁷ mm ⁴]	l _p [10 ⁷ mm⁴]
SAB 180C	10.291.100	1.278.700	2.600.000
			Tab. 29

Antriebsriemen

Der Antriebsriemen besteht aus abriebfestem stahlverstärktem Polyurethan für hohe Zugkräfte.

Тур	Riementyp	Riemenbreite [mm]	Gewicht kg/m
SAB 180C	32 AT 10HPF	32	0,205

Tab. 30


SAB 180C - Tragzahlen

Тур	F _x	F	F _z	M _×	M _y	M _ջ
	[N]	[Ň]	[N]	[Nm]	[Nm]	[Nm]
SAB 180C	2125	3620	3620	246	300	300

Nicht-kumulative Trägheitsmomente bezüglich der Laufwagen-Mittelachse und der theoretischen Lebensdauer der Führungsschiene "Speedy Rail" und der Rollen bis zu 80.000 km.

SAB 250C

Abmessungen SAB 250C

Die Sicherheits-Hublänge wird abhängig von den kundenspezifischen Anforderungen ermittelt

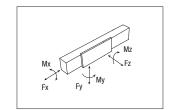
Abb. 10

Technische Daten

	Тур
	SAB 250C
Maximale Hublänge [mm]	7090
Max. Wiederholgenauigkeit [mm]*1	± 0,2
Maximale Geschwindigkeit [m/s]	15
Maximale Beschleunigung [m/s²]	10
Zahnriemen-Typ	50 AT 10HP
Typ Zahnriemenscheibe	Z 24
Riemenscheibendurchmesser [mm]	76,39
Laufwagenhub je Umdrehung Zahnriemenscheibe [mm]	240
Gewicht des Laufwagens [kg]	15
Gewicht Hub Null [kg]	30,4
Gewicht je 100 mm Hub [kg]	1,55
Schienengröße [mm]	250x180
*1) Die Wiederholgenauigkeit ist abhängig von der verwendeten Antriebsart	Tab. 32

^{*1)} Die Wiederholgenauigkeit ist abhängig von der verwendeten Antriebsart

Flächenträgheitsmomente der Aluminiumprofile

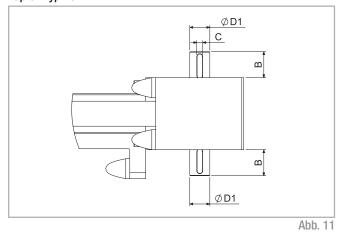

Тур	l _x [10 ⁷ mm⁴]	l _y [10 ⁷ mm⁴]	_p [10 ⁷ mm ⁴]
SAB 250C	27.345.460	4.120.150	8.400.000
			Tab. 33

Antriebsriemen

Der Antriebsriemen besteht aus abriebfestem stahlverstärktem Polyurethan für hohe Zugkräfte.

Тур	Riementyp	Riemenbreite [mm]	Gewicht kg/m
SAB 250C	50 AT 10HP	50	0,34

Tab. 34


SAB 250C - Tragzahlen

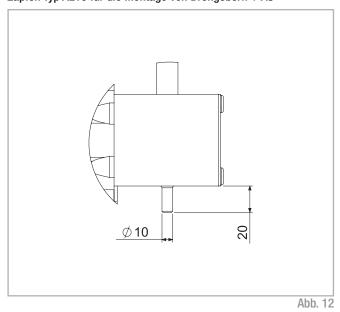
Тур	F	F	F _z	M _×	M _y	M _z
	[N]	[Ň]	[N]	[Nm]	[Nm]	[Nm]
SAB 250C	4565	3620	3620	372	362	362

Nicht-kumulative Trägheitsmomente bezüglich der Laufwagen-Mittelachse und der theoretischen Lebensdauer der Führungsschiene "Speedy Rail" und der Rollen bis zu 80.000 km.

Zapfen

Zapfen Typ AS

Тур	Zapfentyp	В	D1
SAB 60	AS 14	32	14h7
SAB 120	AS 20	26	20h7
SAB 180	AS 20	39.65	20h7
SAB 250	AS 30	61.5	30h7

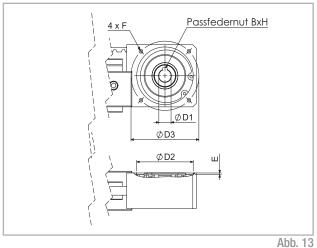

Tab. 36

Der Zapien kar	ın aui belder	Seiten	ues Anu	riebkopies	vorgesenen	werden.

Тур	Zapfentyp	Antriebskopf AS links	Antriebskopf AS rechts	Antriebskopf AS beidseitig
SAB 60	AS 14	1E	1C	1A
SAB 120	AS 20	1E	1C	1A
SAB 180	AS 20	1E	1C	1A
SAB 250	AS 30	1E	1C	1A

Tab. 37

Zapfen Typ AE10 für die Montage von Drehgebern + AS



Тур	Antriebskopf AS rechts + AE	Antriebskopf AS links + AE	ØD
SAB 60	1G	11	49
SAB 120	1G	11	49
SAB 180	1G	11	49
SAB 250	1G	11	76

Der Zapfen kann auf beiden Seiten des Antriebkopfes vorgesehen werden

Hohlwellen

Hohlwelle Typ AC

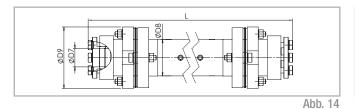
Тур	Zapfentyp	Antriebskopf
SAB 60	AC 14	2A
SAB 120	AC 20	2A

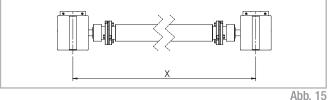
Tab. 39

Für die Montage von angebotenen Standard-Getrieben über Hohlwelle ist ein Adapterflansch erforderlich, der bei Rollon erhältlich ist.

Einheit mm

Тур	Zapfentyp	D1	D2	D3	E	F	Passfeder B x H
SAB 60	AC 14	14H7	65	78	3,5	M5	5 x 5
SAB 120	AC 20	20H7	55	72	3,5	M6	6 x 6

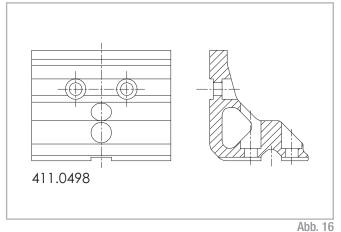

Tab. 40


Lineareinheiten im Paralleleinsatz

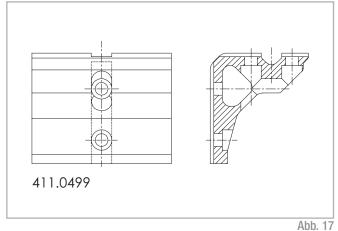
Verbindungswelle für den Einsatz in paralleler Anordnung

Für den Einsatz von zwei Lineareinheiten in paralleler Anordnung ist eine Synchronisations-Antriebswelle, die die Antriebe der beiden Linearein-

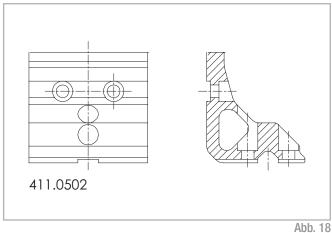
heiten miteinander verbindet, notwendig. Rollon kann in diesem Fall ein komplettes Kit bestehend aus Aluminium-Welle, Lamellenkupplungen und Spannelementen liefern.

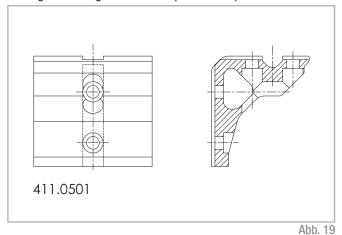

Einheit mm

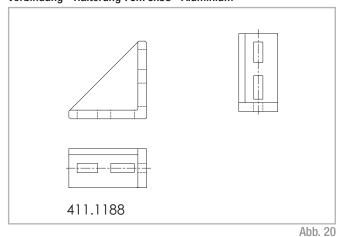
Тур	Zapfentyp	D7	D8	D9	Bestellcode
SAB 60	AP 12	12	25	45	GK12P1A
SAB 120	AP 15	15	40	69,5	GK15P1A
SAB 180	AP 20	20	40	69,5	GK20P1A
SAB 250	AP 25	25	70	99	GK25P1A


Tab. 41

Zubehör


Montage-Halterung - Lange Seite (Ø12.5 - Ø20) Aluminium


Montage-Halterung - Lange Seite (Ø12.5 - Ø20) Aluminium


Montage-Halterung - Kurze Seite (Ø12.5 - Ø20) Aluminium

Montage-Halterung - Kurze Seite (Ø12.5 - Ø20) Aluminium

Verbindung - Halterung 75x75x38 - Aluminium

Verbindung - Halterung 75x75x38 - Aluminium

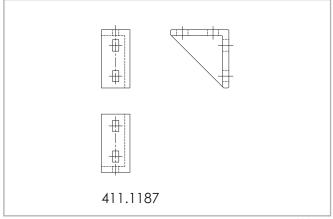
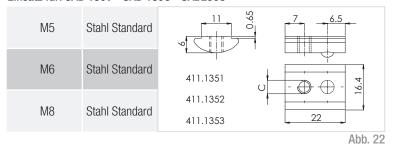



Abb. 21

Einsatz für: SAB 180V - SAB 180C - SAB250C

Schnelleinsatz für: SAB 180V - SAB 180C - SAB 250C

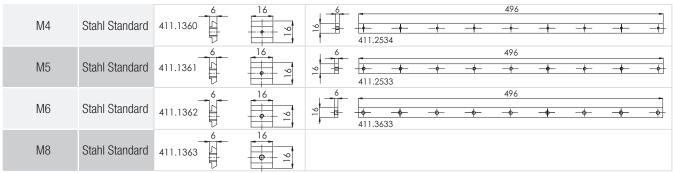


Abb. 23

Schwalbenschwanz-Einsätze für: SAB 120C - SAB 120V - SAB 180V - SAB 180C - SAB 250C

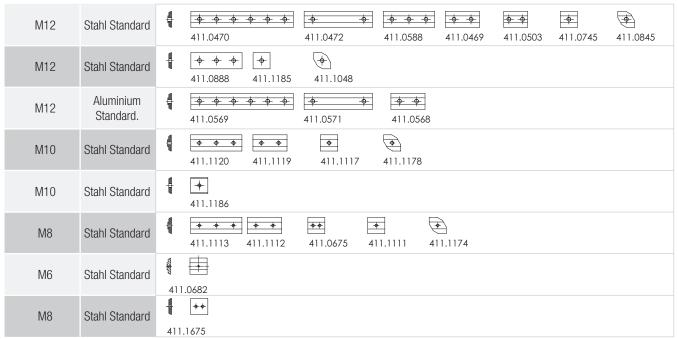
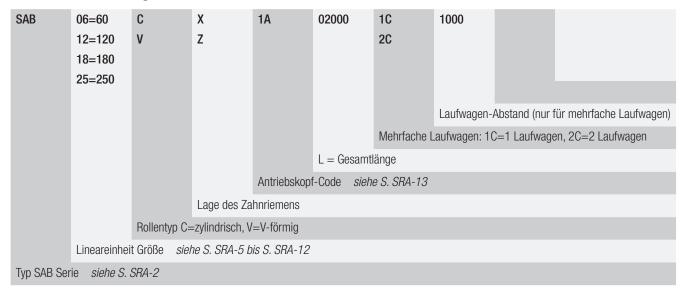


Abb. 24


Schwalbenschwanz-Einsätze für: SAB 60V

M8	Stahl Standard	♦ ■ 411.3532					
M6	Stahl Standard	411.0769	411.0771	411.0754	411.0768	≇ 411.0732	
M5	Aluminium Standard.	♦ ■ 411.2732	411.2733				
M4	Stahl Standard	♦ ⊞ 411.1732					Abb

Abb. 25

Bestellschlüssel / ~

Bestellbezeichnung für Lineareinheiten SAB Serie

Um Identifizierungscodes für Actuator Line zu erstellen, besuchen Sie bitte die Seite: http://configureactuator.rollon.com

0	Configure Actuator
---	---------------------------

Ausrichtung Links/Rechts

	∇	Rechts
		Links

ZSY Serie / ~

Beschreibung ZSY

Bei den Produkten der Baureihe **ZSY** handelt es sich um selbsttragende Linearführungen aus stranggepresstem Aluminium, die durch ein System aus Polyurethanriemen angetrieben werden. Dank der harteloxierten Oberflächen und der mit einem Kunststoff-Verbundmaterial beschichteten Rollen zeichnet sich die Baureihe ZSY durch außergewöhnliche Leistungen und hohe Tragkräfte aus. Das System ist wartungsfrei und verlangt keine Schmierung. Die Linearführungen sind auch in schmutzigen Arbeitsumgebungen seht zuverlässig und bieten einen einzigartig leisen Betrieb.

Die Lineareinheiten der Baureihe ZSY wurden entwickelt, um vertikale Bewegungen bei Gantry-Bauweise zu ermöglichen oder für Anwendungen, bei denen das Aluminiumprofil beweglich ist und der Läufer fest steht. Sie eignen sich ideal als Z-Achse in einem 3-Achsen-System. Erhältlich in der Größe 180 mm.

Einige der Hauptvorteile der Baureihe SAB:

- Hohe Zuverlässigkeit
- Selbsttragend für größte Freiheit beim Design
- Hohe technische Leistung
- Hohe Tragzahlen
- Hohe Zuverlässigkeit in schmutzigen Umgebungen
- Keine Schmierung erforderlich
- Einzigartig ruhiger Lauf
- Selbstausrichtendes System

Abb. 26

Aufbau des Systems

Aluminiumprofil

ZSY ist ein Linearführungssystem mit Schienenprofilen mit hohlen Querschnitten aus einer wärmebehandelten Aluminiumlegierung. Dies macht die Schienen hoch belastbar gegen Biege- und Torsionskräfte. Die Schienen werden einer patentierten Behandlung unterzogen, die ihnen eine glatte und gehärtetem Stahl gleichenden Oberfläche und eine optimale Verschleißfestigkeit verleiht, auch in schmutzigen Umgebungen.

Antriebsriemen

Das Antriebssystem der Baureihe SAB besteht aus einem Polyurethan-Zahnriemen, der mit hochfesten Stahlgurten verstärkt ist. Für einige Anwendungen ist die Lösung mit Riemenantrieb aufgrund der hohen Last-übertragungseigenschaften, der kompakten Abmessungen und der geringen Geräuschentwicklung ideal. Einige der Vorteile eines Systems mit Riemenantrieb sind: Hohe Verfahrgeschwindigkeit, hohe Beschleunigung, geringe Geräuschentwicklung und keine Notwendigkeit der Schmierung.

Laufwagen

Der Laufwagen der Lineareinheiten der Baureihe ZSY besteht aus eloxiertem Aluminium.

Allgemeine Daten des verwendeten Aluminiums: AL 6060

Chemische Zusammensetzung [%]

Al	Mg	Si	Fe	Mn	Zn	Cu	Verunreinigungen
Rest	0,35-0,60	0,30-0,60	0,30	0,10	0,10	0,10	0,05-0,15

Tab. 42

Physikalische Eigenschaften

Dichte	Elastizitäts- modul	Wärmeausdehnungs- koeffizient (20°-100°C)	Wärmeleitfähigkeit (20°C)	Spezifische Wärme (0°- 100°C)	Spez. Wider- stand	Schmelz- temperatur
kg	kN	10-6	W	J		
					Ω . m . 10 ⁻⁹	°C
dm ³	mm²	K	m . K	kg . K		
2,7	69	23	200	880-900	33	600-655

Tab. 43

Mechanische Eigenschaften

Rm	Rp (02)	А	НВ
N — mm²	N — mm²	%	_
205	165	10	60-80

Führungssystem

Das Führungssystem ist ausschlaggebend für die maximal zulässigen Tragzahlen, Geschwindigkeiten und Beschleunigung.

ZSY mit V-förmigen Rollen:

Diese Rollen sind mit einem gesinterten Kunststoff-Verbundmaterial beschichtet, das resistent gegen Schadstoffe und nahezu wartungsfrei ist. In den Rollen sind leistungsfähige Kugel- oder Nadellager installiert, die Silbentrennung nach einem Standardverfahren geschmiert werden oder eine Lebensdauerschmierung verfügen. Alle Rollenträger sind mit konzentrischen und exzentrischen Stiften für eine schnelle Einstellung des Kontakts zwischen Rollen und Schiene ausgestattet. Die Halterungen werden am Rahmen montiert, wenn die Schiene beweglich ist, und an den Laufwagen, wenn sie fest montiert wird.

ZSY 180 Querschnitt

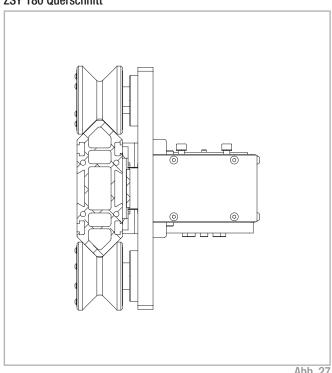
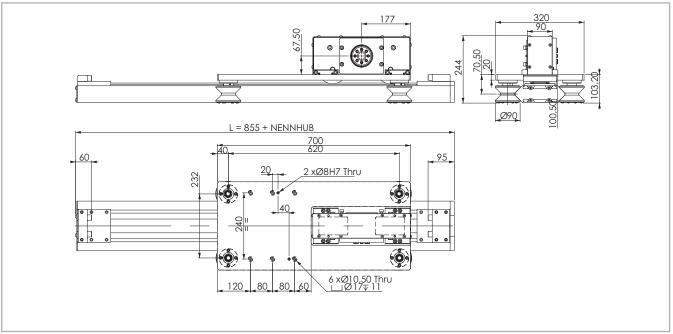



Abb. 27

ZSY 180V

Abmessungen ZSY 180V

Die Sicherheits-Hublänge wird abhängig von den kundenspezifischen Anforderungen ermittelt

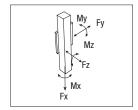
Abb. 28

Technische Daten

	Тур
	ZSY 180V
Maximale Hublänge [mm]	2500
Max. Wiederholgenauigkeit [mm]*1	± 0,2
Maximale Geschwindigkeit [m/s]	8
Maximale Beschleunigung [m/s²]	8
Zahnriemen-Typ	50 AT 10HP
Typ Zahnriemenscheibe	Z 30
Riemenscheibendurchmesser [mm]	95,49
Laufwagenhub je Umdrehung Zahnriemenscheibe [mm]	300
Gewicht des Laufwagens [kg]	25,7
Gewicht Hub Null [kg]	36
Gewicht je 100 mm Hub [kg]	1,06
Schienengröße [mm]	180x60
*1) Die Wiederholgenauigkeit ist abhängig von der verwendeten Antriebsart	Tab. 45

^{*1)} Die Wiederholgenauigkeit ist abhängig von der verwendeten Antriebsart

Flächenträgheitsmomente der Aluminiumprofile


Тур	l _x [10 ⁷ mm⁴]	l _y [10 ⁷ mm⁴]	_p [10 ⁷ mm ⁴]
ZSY 180V	10.291.100	1.278.700	2.600.000
			Tab. 46

Antriebsriemen

Der Antriebsriemen besteht aus abriebfestem stahlverstärktem Polyurethan für hohe Zugkräfte.

Тур	Riementyp	Riemenbreite [mm]	Gewicht kg/m
ZSY 180V	50 AT 10HP	50	0,34

Tab. 47

ZSY 180V - Tragzahlen

Тур	F _x	F	F _z	M _x	M _y	M _z
	[N]	[N]	[N]	[Nm]	[Nm]	[Nm]
ZSY 180V	4980	2300	2600	188	806	713

Nicht-kumulative Trägheitsmomente bezüglich der Laufwagen-Mittelachse und der theoretischen Lebensdauer der Führungsschiene "Speedy Rail" und der Rollen bis zu 80.000 km.

Antriebskopf

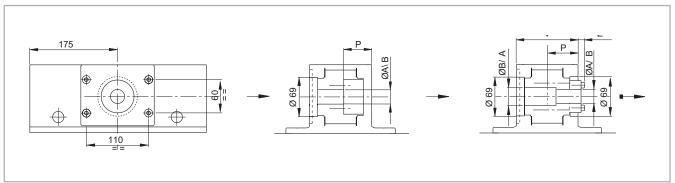
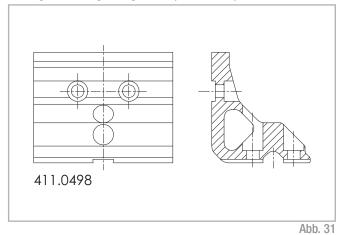


Abb. 29

Тур	A Ø [mm]	B Ø [mm]	V [mm]	P [mm]	Z [mm]	Antriebs-kopf
70V 100V	25H7		108	48,5	11,5	1CA
ZSY 180V		32H7	108	52,5	6	1CB

Tab. 49

Adapterflansche



Тур	Getriebe-Code		Größe	
	MP105/TR105	70	25	85
ZSY 180V	LP090/PE4/LC090	68	22	80
	EP90 TT	50	19	65
				Tab. 50

Abb. 30

Zubehör

Montage-Halterung - Lange Seite (Ø12.5 - Ø20) Aluminium

Montage-Halterung - Lange Seite (Ø12.5 - Ø20) Aluminium

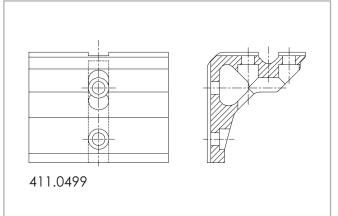
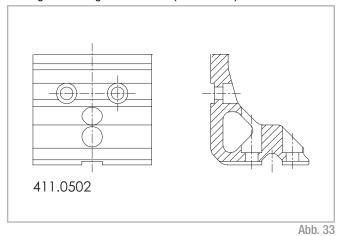
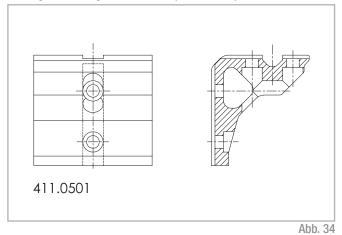
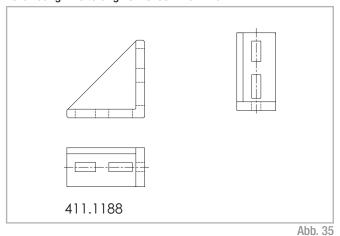




Abb. 32


Montage-Halterung - Kurze Seite (Ø12.5 - Ø20) Aluminium

Montage-Halterung - Kurze Seite (Ø12.5 - Ø20) Aluminium

Verbindung - Halterung 75x75x38 - Aluminium

Verbindung - Halterung 75x75x38 - Aluminium

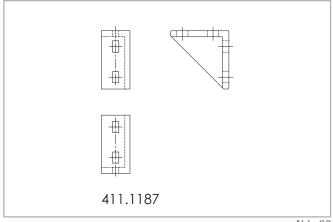


Abb. 36

Einsatz für: ZSY 180V

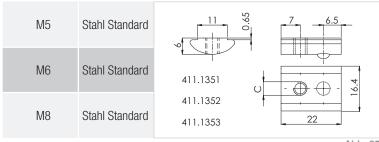


Abb. 37

Schnelleinsatz für: ZSY 180V

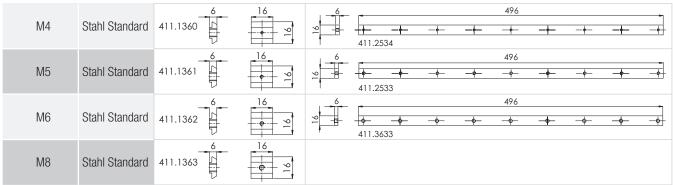


Abb. 38

Schwalbenschwanz-Einsätze für: ZSY 180V

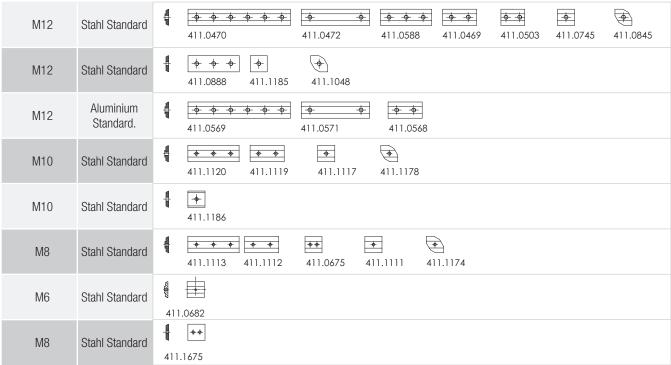
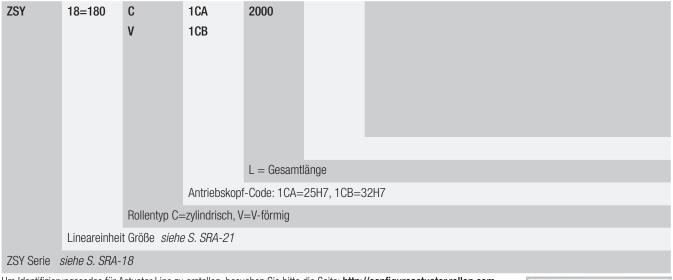
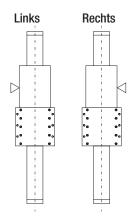



Abb. 39

Bestellschlüssel / ~


Bestellbezeichnung für Lineareinheiten ZSY

Um Identifizierungscodes für Actuator Line zu erstellen, besuchen Sie bitte die Seite: http://configureactuator.rollon.com

Ausrichtung Links/Rechts

SAR Serie V

Beschreibung SAR



Abb. 40

Bei den Produkten der Baureihe **SAR** handelt es sich um selbsttragende Linearführungen aus stranggepresstem Aluminium, die durch ein System aus Polyurethanriemen angetrieben werden. Dank der harteloxierten Oberflächen und der mit einem Kunststoff-Verbundmaterial beschichteten Rollen zeichnet sich die Baureihe SAR durch außergewöhnliche Leistungen und hohe Tragkräfte aus. Das System ist wartungsfrei und verlangt keine Schmierung. Die Linearführungen sind auch in schmutzigen Arbeitsumgebungen seht zuverlässig und bieten einen einzigartig leisen Betrieb.

Die Baureihe **SAR** umfasst Führungsschienen mit zylindrischen oder V-förmigen Rollen als Komponenten der Linearbewegung. Diese linearen Bewegungssysteme sind leicht, selbsttragend, einfach zu montieren, kostengünstig, modular, sauber und ruhig laufend. Dank dieser Lösung eignet sich diese Lösung speziell für schmutzige Umgebungen und hohe Dynamiken bei der Automatisierung. Die Baureihe SAR umfasst Profile verschiedener Größen: 120 -180 - 250 mm.

Einige der Hauptvorteile der Baureihe SAR:

- Hohe Zuverlässigkeit
- Selbsttragend für größte Freiheit beim Design
- Hohe technische Leistung
- Hohe Tragzahlen
- Hohe Zuverlässigkeit in schmutzigen Umgebungen
- Keine Schmierung erforderlich
- Einzigartig ruhiger Lauf
- Selbstausrichtendes System
- Beliebig langer Hub

Aufbau des Systems

Aluminiumprofil

SAR ist ein Linearführungssystem mit Schienenprofilen mit hohlen Querschnitten aus einer wärmebehandelten Aluminiumlegierung. Dies macht die Schienen hoch belastbar gegen Biege- und Torsionskräfte. Die Schienen werden einer patentierten Behandlung unterzogen, die ihnen eine glatte und gehärtetem Stahl gleichenden Oberfläche und eine optimale Verschleißfestigkeit verleiht, auch in schmutzigen Umgebungen.

Laufwagen

Der Laufwagen der Lineareinheiten der Baureihe SAR besteht aus eloxiertem Aluminium. Entsprechend den unterschiedlichen Größen sind Laufwagen in verschiedenen Längen erhältlich.

Antrieb mit Zahnstange und Ritzel

Die Baureihe SAR wird durch ein System aus Zahnstange und Ritzel angetrieben. Diese Option eignet sich zum Erzielen langer Hübe und ermöglicht die Montage und den Betrieb doppelter Laufwagen. Durch die gehärteten Zahnstangen und Ritzel kann das System in verschmutzten Arbeitsumgebungen besser betrieben werden, während die gerade Verzahnung hohe Lastzahlen, geringe Geräuschentwicklung und eine sanfte Linearbewegung gestattet. Die SAR-Produkte können mit einem Schmierungs-Kit geliefert werden, um eine periodische Schmierung zu vermeiden.

Allgemeine Daten des verwendeten Aluminiums: AL 6060

Chemische Zusammensetzung [%]

Al	Mg	Si	Fe	Mn	Zn	Cu	Verunreinigungen
Rest	0,35-0,60	0,30-0,60	0,30	0,10	0,10	0,10	0,05-0,15

Tab. 51

Physikalische Eigenschaften

Dichte	Elastizitäts- modul	Wärmeausdehnungs- koeffizient (20°-100°C)	Wärmeleitfähigkeit (20°C)	Spezifische Wärme (0°- 100°C)	Spez. Wider- stand	Schmelz temperatur
kg	kN	10-6	W	J		
					Ω . m . 10 $^{ ext{-9}}$	°C
dm ³	mm²	K	m . K	kg . K		
2,7	69	23	200	880-900	33	600-655

Tab. 52

Mechanische Eigenschaften

Rm	Rp (02)	А	НВ
N —— mm²	N —— mm²	%	_
205	165	10	60-80

Führungssystem

Das Führungssystem ist ausschlaggebend für die maximal zulässigen Tragzahlen, Geschwindigkeiten und Beschleunigung.

SAB mit zylindrischen oder V-förmigen Rollen:

Das Angebot von SAR umfasst eine große Auswahl an zylindrischen und V-förmigen Rollen sowie Läufer mit zwei oder mehr Rollen. Die SAR-Rollen sind mit einem gesinterten Kunststoff-Verbundmaterial beschichtet, das resistent gegen Schadstoffe und nahezu wartungsfrei ist. In den Rollen sind leistungsfähige Kugel- oder Nadellager installiert, die entweder nach einem Standardverfahren geschmiert werden oder eine Lebensdauerschmierung verfügen. Alle Rollenträger sind mit konzentrischen und exzentrischen Stiften für eine schnelle Einstellung des Kontakts zwischen Rollen und Schiene ausgestattet.

Die Halterungen werden am Rahmen montiert, wenn die Schiene beweglich ist, und an den Laufwagen, wenn sie fest montiert wird.

SAR Querschnitt

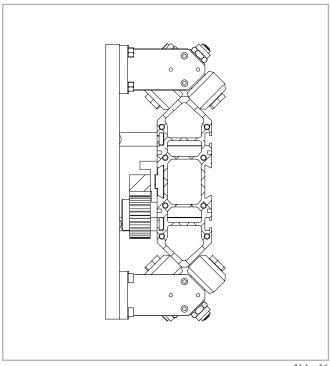
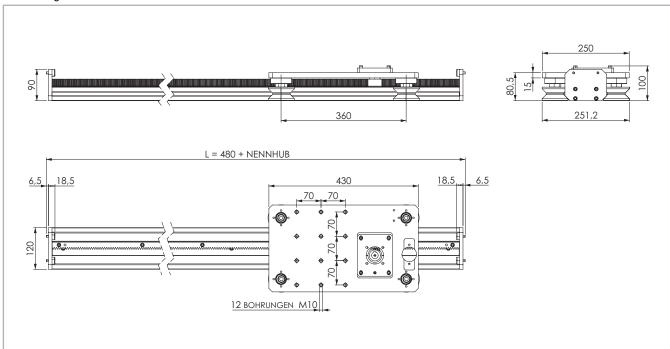



Abb. 41

SAR 120V

Abmessungen SAR 120V

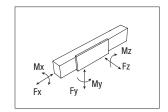
Die Sicherheits-Hublänge wird abhängig von den kundenspezifischen Anforderungen ermittelt

Abb. 42

Technische Daten

	Тур
	SAR 120V
Maximale Hublänge [mm]*1	NO LIMITS
Max. Wiederholgenauigkeit [mm]*2	± 0,15
Maximale Geschwindigkeit [m/s]	3
Maximale Beschleunigung [m/s²]	8
Zahnstangen-Modul	m 2
Teilkreisdurchmesser des Ritzels [mm]	40
Vorschub des Laufwagens pro Ritzelumdrehung [mm]	125,66
Gewicht des Laufwagens [kg]	7,5
Gewicht Hub Null [kg]	12
Gewicht je 100 mm Hub [kg]	0,85
Schienengröße [mm]	120x40
*1) Durch Verwendung spezieller Rollon-Verbindungen können längere Hübe erreicht werde	n. Tab. 54

^{*1)} Durch Verwendung spezieller Rollon-Verbindungen können längere Hübe erreicht werden.
*2) Die Wiederholgenauigkeit ist abhängig von der verwendeten Antriebsart

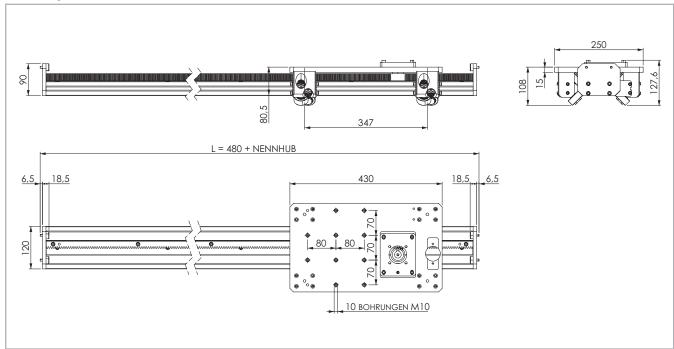

Flächenträgheitsmomente der Aluminiumprofile

Тур	l _x [mm⁴]	l _y [mm⁴]	lր [10 ⁷ mm⁴]
SAR 120V	2.138.988	259.785	430.000
			Tab. 55

Spezifikationen der Zahnstangen

Тур	Typ der Zahnstange	Zahn- stangen- Modul	Qualität
SAR 120V	geradverzahnt und gehärtet	m 2	Q10

Tab. 56


SAR 120V - Tragzahlen

Тур	F _x	F _y	F _z	M _x	M _y	M _z
	[N]	[N]	[N]	[Nm]	[Nm]	[Nm]
SAR 120V	1633	1400	800	39.32	144	252

Nicht-kumulative Trägheitsmomente bezüglich der Laufwagen-Mittelachse und der theoretischen Lebensdauer der Führungsschiene "Speedy Rail" und der Rollen bis zu 80.000 km.

SAR 120C

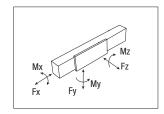
Abmessungen SAR 120C

Die Sicherheits-Hublänge wird abhängig von den kundenspezifischen Anforderungen ermittelt

Abb. 43

Technische Daten

	Тур
	SAR 120C
Maximale Hublänge [mm]*1	NO LIMITS
Max. Wiederholgenauigkeit [mm]*2	± 0,5
Maximale Geschwindigkeit [m/s]	3
Maximale Beschleunigung [m/s²]	10
Zahnstangen-Modul	m 2
Teilkreisdurchmesser des Ritzels [mm]	40
Vorschub des Laufwagens pro Ritzelumdrehung [mm]	125,66
Gewicht des Laufwagens [kg]	8,4
Gewicht Hub Null [kg]	13
Gewicht je 100 mm Hub [kg]	0,85
Schienengröße [mm]	120x40
*1) Durch Verwendung spezieller Rollon-Verbindungen können längere Hübe erreicht werder	Tab. 58


 $^{^{\}star}$ 1) Durch Verwendung spezieller Rollon-Verbindungen können längere Hübe erreicht werden.

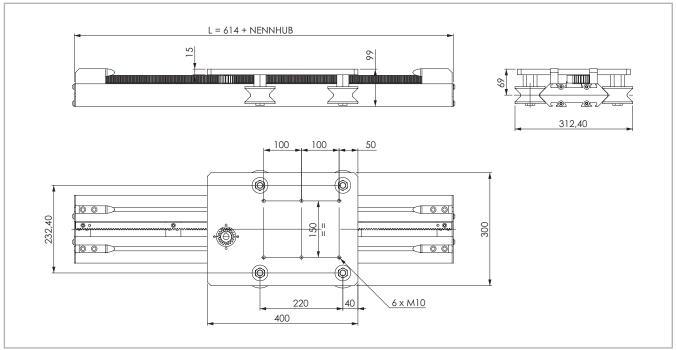
Flächenträgheitsmomente der Aluminiumprofile

Тур	l _x [mm⁴]	l _y [mm⁴]	l _p [10 ⁷ mm⁴]
SAR 120C	2.138.988	259.785	430.000
			Tab. 59

Spezifikationen der Zahnstangen

Тур	Typ der Zahnstange	Zahn- stangen- Modul	Qualität
SAR 120C	geradverzahnt und gehärtet	m 2	Q10
			Tab. 60

SAR 120C - Tragzahlen


Тур	F _x	F _y	F _z	M _x	M _y	M _z
	[N]	[N]	[N]	[Nm]	[Nm]	[Nm]
SAR 120C	1633	1400	800	98	432	432

Nicht-kumulative Trägheitsmomente bezüglich der Laufwagen-Mittelachse und der theoretischen Lebensdauer der Führungsschiene "Speedy Rail" und der Rollen bis zu 80.000 km.

^{*2)} Die Wiederholgenauigkeit ist abhängig von der verwendeten Antriebsart

SAR 180V

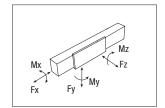
Abmessungen SAR 180V ì

Die Sicherheits-Hublänge wird abhängig von den kundenspezifischen Anforderungen ermittelt

Abb. 44

Technische Daten

	Тур
	SAR 180V
Maximale Hublänge [mm]*1	NO LIMITS
Max. Wiederholgenauigkeit [mm]*2	± 0,15
Maximale Geschwindigkeit [m/s]	3
Maximale Beschleunigung [m/s²]	8
Zahnstangen-Modul	m 2
Teilkreisdurchmesser des Ritzels [mm]	40
Vorschub des Laufwagens pro Ritzelumdrehung [mm]	125,66
Gewicht des Laufwagens [kg]	7
Gewicht Hub Null [kg]	16,5
Gewicht je 100 mm Hub [kg]	1,3
Schienengröße [mm]	180x40


^{*1)} Durch Verwendung spezieller Rollon-Verbindungen können längere Hübe erreicht werden.

Flächenträgheitsmomente der Aluminiumprofile

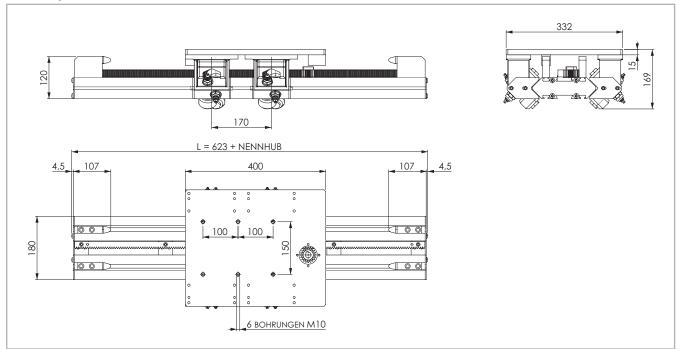
Тур	l _× [mm⁴]	l _y [mm⁴]	 [10 ⁷ mm ⁴]
SAR 180V	10.291.100	1.278.700	2.600.000
			Tab. 63

Тур	Typ der Zahnstange	Zahn- stangen- Modul	Qualität
SAR 180V	geradverzahnt und gehärtet	m2	Q10

Tab. 64

SAR 180V - Tragzahlen

Тур	F _x	F _y	F _z	M _x	M _y	M _z
	[N]	[N]	[N]	[Nm]	[Nm]	[Nm]
SAR 180V	1633	1400	800	58	88	154


Tab. 62

Nicht-kumulative Trägheitsmomente bezüglich der Laufwagen-Mittelachse und der theoretischen Lebensdauer der Führungsschiene "Speedy Rail" und der Rollen bis zu 80.000 km.

^{*2)} Die Wiederholgenauigkeit ist abhängig von der verwendeten Antriebsart

SAR 180C

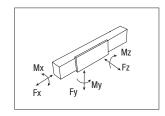
Abmessungen SAR 180C

Die Sicherheits-Hublänge wird abhängig von den kundenspezifischen Anforderungen ermittelt

Abb. 45

Technische Daten

	Тур
	SAR 180C
Maximale Hublänge [mm]*1	6900
Max. Wiederholgenauigkeit [mm]*2	± 0,15
Maximale Geschwindigkeit [m/s]	3
Maximale Beschleunigung [m/s²]	10
Zahnstangen-Modul	m2
Teilkreisdurchmesser des Ritzels [mm]	40
Vorschub des Laufwagens pro Ritzelumdrehung [mm]	125,66
Gewicht des Laufwagens [kg]	11,46
Gewicht Hub Null [kg]	16
Gewicht je 100 mm Hub [kg]	1,3
Schienengröße [mm]	180x40


^{*1)} Durch Verwendung spezieller Rollon-Verbindungen können längere Hübe erreicht werden. *2) Die Wiederholgenauigkeit ist abhängig von der verwendeten Antriebsart

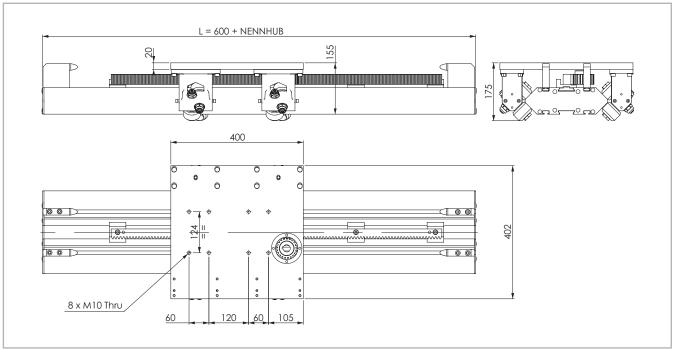
Flächenträgheitsmomente der Aluminiumprofile

Тур	l _x [mm⁴]	l _y [mm⁴]	_p [10 ⁷ mm ⁴]
SAR 180C	10.291.100	1.278.700	2.600.000
			Tab. 67

Spezifikationen der Zahnstangen

Тур	Typ der Zahnstange	Zahn- stangen- Modul	Qualität
SAR 180C	geradverzahnt und gehärtet	m2	Q10
			Tab. 68

SAR 180C - Tragzahlen


Тур	F _x	F _y	F _z	M _x	M _y	M _z
	[N]	[N]	[N]	[Nm]	[Nm]	[Nm]
SAR 180C	1633	3620	3620	246	308	308

Tab. 66

Nicht-kumulative Trägheitsmomente bezüglich der Laufwagen-Mittelachse und der theoretischen Lebensdauer der Führungsschiene "Speedy Rail" und der Rollen bis zu 80.000 km.

SAR 250C

Abmessungen SAR 250C

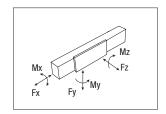
Die Sicherheits-Hublänge wird abhängig von den kundenspezifischen Anforderungen ermittelt

Abb. 46

Technische Daten

	Тур
	SAR 250C
Maximale Hublänge [mm]*1	6900
Max. Wiederholgenauigkeit [mm]*2	± 0,15
Maximale Geschwindigkeit [m/s]	3
Maximale Beschleunigung [m/s²]	10
Zahnstangen-Modul	m3
Teilkreisdurchmesser des Ritzels [mm]	63
Vorschub des Laufwagens pro Ritzelumdrehung [mm]	197,92
Gewicht des Laufwagens [kg]	15
Gewicht Hub Null [kg]	29
Gewicht je 100 mm Hub [kg]	2,17
Schienengröße [mm]	250x80
*1) Durch Verwendung spezieller Rollon-Verbindungen können längere Hübe erreicht werden	Tab. 70

^{*1)} Durch Verwendung spezieller Rollon-Verbindungen können längere Hübe erreicht werden.


Flächenträgheitsmomente der Aluminiumprofile

Тур	l _× [mm⁴]	l _y [mm⁴]	ا [10 ⁷ mm⁴]
SAR 250C	27.345.460	4.120.150	8.400.000
			Tab. 71

Spezifikationen der Zahnstangen

•	•		
Тур	Typ der Zahnstange	Zahn- stangen- Modul	Qualität
SAR 250C	geradverzahnt und gehärtet	m3	Q10

Tab. 72

SAR 250C - Tragzahlen

Тур	F _x	F _y	F _z	M _x	M _y	M _z
	[N]	[N]	[N]	[Nm]	[Nm]	[Nm]
SAR 250C	3598	3620	3620	372	453	453

Nicht-kumulative Trägheitsmomente bezüglich der Laufwagen-Mittelachse und der theoretischen Lebensdauer der Führungsschiene "Speedy Rail" und der Rollen bis zu 80.000 km.

^{*2)} Die Wiederholgenauigkeit ist abhängig von der verwendeten Antriebsart

Zapfen

Automatische programmierbare Zahnstangenschmierung

Das Schmierfett wird durch eine programmierbare Patrone geliefert (durchschnittliche Lebensdauer: ca. 1 Jahr) (a). Das Fett wird mit Hilfe eines Filzzahnrades (1) gleichmäßig auf die Zahnstangen verteilt. Sie brauchen einen Montagesatz pro Zahnstange.

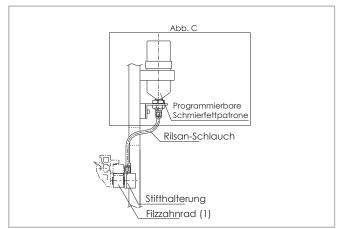
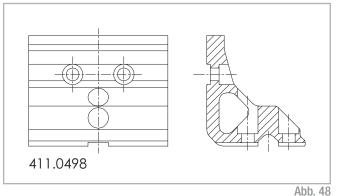



Abb. 47

Zubehör

Montage-Halterung - Lange Seite (Ø12.5 - Ø20) Aluminium

Montage-Halterung - Lange Seite (Ø12.5 - Ø20) Aluminium

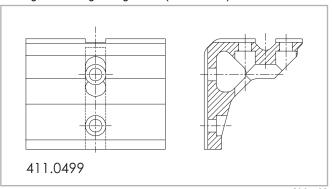
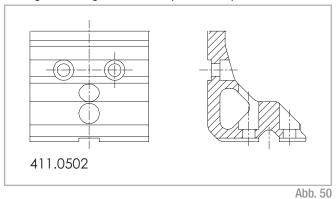
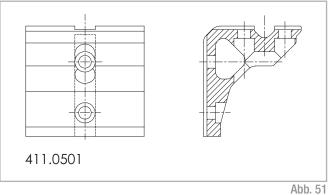
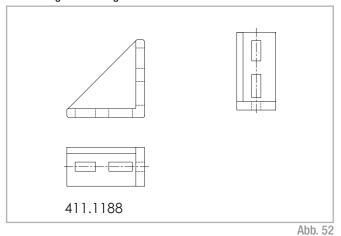




Abb. 49


Montage-Halterung - Kurze Seite (Ø12.5 - Ø20) Aluminium

Montage-Halterung - Kurze Seite (Ø12.5 - Ø20) Aluminium

Verbindung - Halterung 75x75x38 - Aluminium

Verbindung - Halterung 75x75x38 - Aluminium

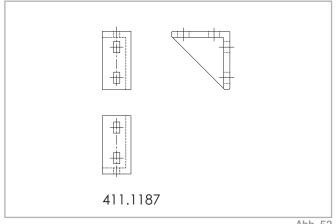


Abb. 53

SRA-35

Einsatz für: SAR 180C - SAR 180V - SAR 250C

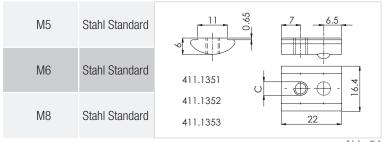


Abb. 54

Schnelleinsatz für: SAR 180C - SAR 180V - SAR 250C

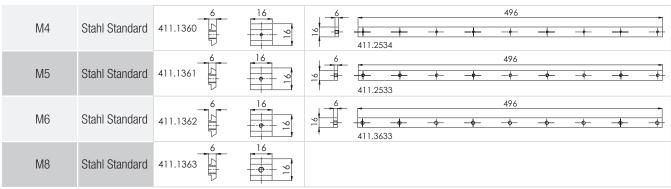


Abb. 55

Schwalbenschwanz-Einsätze für: SAR 120C - SAR 120V - SAR 180C - SAR 180V - SAR 250C

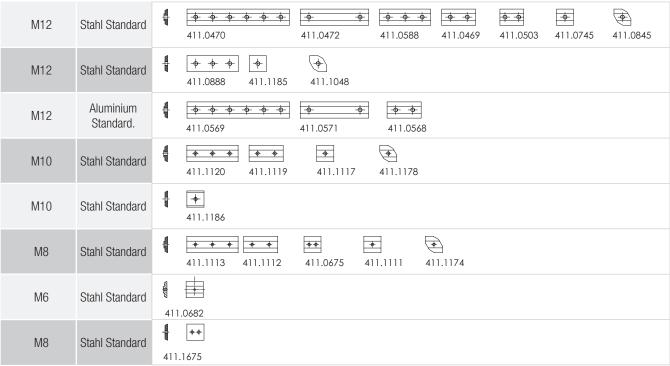
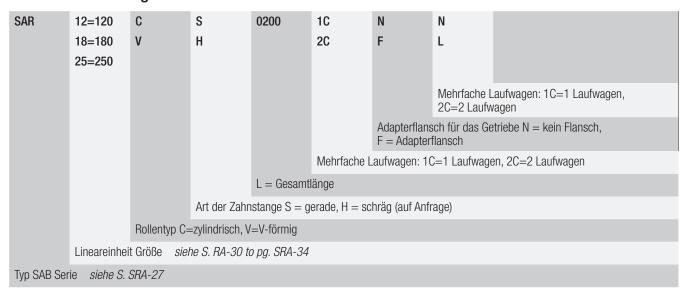
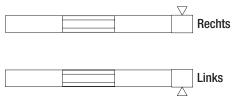



Abb. 56

Bestellschlüssel / ~


Bestellbezeichnung für Lineareinheiten SAR Serie

Um Identifizierungscodes für Actuator Line zu erstellen, besuchen Sie bitte die Seite: http://configureactuator.rollon.com

Statische Belastung und Lebensdauer

Statische Belastung

Bei der statischen Überprüfung geben die radiale Tragzahl $F_{_{v}}$, die axiale Tragzahl $F_{_{_{\! T}}}$ und die Momente $M_{_{\! x^{_{\! T}}}}$ und $M_{_{_{\! T}}}$ die maximal zulässigen Werte der Belastung an. Höhere Belastungen beeinträchtigen die Laufeigenschaften. Zur Überprüfung der statischen Belastung wird ein Sicherheitsfaktor S_0 verwendet, der die Rahmenparameter der Anwendung berücksichtigt und in der folgenden Tabelle näher definiert ist:

Alle Werte für die Traglast beziehen sich auf eine Linearführung, die gut an einer starren Struktur befestigt ist. Bei freitragenden Systemen muss die Durchbiegung des Linearachsenprofils berücksichtigt werden.

Sicherheitsfaktor S

Weder Stöße noch Vibrationen, weicher und niederfrequenter Richtungswechsel, hohe Montagegenauigkeit, keine elastischen Verformungen	2 - 3
Normale Einbaubedingungen	3 - 5
Stöße und Vibrationen, hochfrequente Richtungswechsel, deutliche elastische Verformungen	5 - 7

Abb. 1

Das Verhältnis der tatsächlichen zur maximal zulässigen Belastung darf höchstens so groß sein wie der Kehrwert des angenommenen Sicherheitsfaktors S_o.

$$\frac{P_{fy}}{F_v} \le \frac{1}{S_0} \qquad \frac{P_{fz}}{F_z} \le \frac{1}{S_0}$$

$$\frac{P_{fz}}{F_z} \leq \frac{1}{S_0}$$

$$\frac{M_1}{M_x} \leq \frac{1}{S_0}$$

$$\frac{M_2}{M_y} \le \frac{1}{S_0}$$

$$\frac{M_3}{M_z} \le \frac{1}{S_0}$$

Abb. 2

Die oben stehenden Formeln gelten für einen einzelnen Belastungsfall. Wirken zwei oder mehr der beschriebenen Kräfte gleichzeitig, ist folgende Überprüfung vorzunehmen:

$$\frac{P_{fy}}{F_{y}} + \frac{P_{fz}}{F_{z}} + \frac{M_{1}}{M_{x}} + \frac{M_{2}}{M_{y}} + \frac{M_{3}}{M_{z}} \le \frac{1}{S_{0}}$$

= wirkende Belastung (y Richtung) [N]

= theoretisch zulässige Belastung (y Richtung) [N]

= wirkende Belastung (z Richtung) [N]

= theoretisch zulässige Belastung (z Richtung) [N]

 $M_{_{1}}, M_{_{2}}, M_{_{3}} = externe Momente (Nm)$

 M_{y} , M_{y} , M_{z} = maximal zulässige Momente in den verschiedenen Belastungsrichtungen (Nm)

Der Sicherheitsfaktor S₀ kann an der unteren angegebenen Grenze liegen, wenn die auftretenden Kräfte hinreichend genau bestimmt werden können. Wirken Stöße und Vibrationen auf das System ein, sollte der höhere Wert gewählt werden. Bei dynamischen Anwendungen sind höhere Sicherheiten erforderlich. Für weitere Informationen wenden Sie sich bitte an unsere Anwendungstechnik.

Empfohlene Zahnriemensicherheiten

Abb. 3

Stöße und Vibrationen	Geschwindig- keit/Beschle- unigung	Einbaulage	Sicher- heitsfaktor
Weder Stöße noch	Gering	horizontal	1.4
Vibrationen	defing	vertikal	1.8
Leichte Stöße und	Mittel	horizontal	1.7
Vibrationen	MILLEI	vertikal	2.2
Stöße und Vibra-	Hoch	horizontal	2.2
tionen	ПОСП	vertikal	3
			Tob 1

Lebensdauer

Berechnung der Lebensdauer

Die dynamische Tragzahl C ist eine zur Berechnung der Lebensdauer verwendete, konventionelle Größe. Diese Belastung entspricht einer Nominal-Lebensdauer von 100 km. Die Verknüpfung von berechneter Leb-

ensdauer, dynamischer Tragzahl und äquivalenter Belastung ist durch die folgende Formel gegeben:

$$L_{km} = 100 \text{ km} \cdot (\frac{Fy\text{-dyn}}{P_{en}} \cdot \frac{1}{f_i})^3$$

 L_{km} = theoretische Lebensdauer (km) Fy-dyn = dynamische Tragzahl (N) P_{eq} = einwirkende äquivalente Belastung (N) f_i = Verwendungsbeiwert (s. Tab. 2)

Abb. 4

Die äquivalente Belastung P_{eq} entspricht in ihren Auswirkungen der Summe der gleichzeitig auf einen Läufer einwirkenden Kräfte und Momente. Sind diese verschiedenen Lastkomponenten bekannt, ergibt sich P aus der folgenden Gleichung:

Für SP Versionen

$$P_{eq} = P_{fy} + P_{fz} + (\frac{M_1}{M_x} + \frac{M_2}{M_y} + \frac{M_3}{M_z}) \cdot F_y$$

Abb. 5

Für CI und CE Versionen

$$P_{eq} = P_{fy} + (\frac{P_{fz}}{F_z} + \frac{M_1}{M_x} + \frac{M_2}{M_y} + \frac{M_3}{M_z}) \cdot F_y$$

Abb. 6

Hierbei sind die externen Lasten als zeitlich konstant angenommen. Kurzzeitige Belastungen, die die maximalen Tragzahlen nicht überschreiten, haben keine relevanten Auswirkungen auf die Lebensdauer und können daher bei der Berechnung vernachlässigt werden.

Verwendungsbeiwert f

f _i	
weder Stöße noch Vibrationen, weiche, niederfrequente Richtungswechsel; saubere Betriebsbedingungen; ($\alpha < 5 \text{m/s}^2$) geringe Geshwindigkeiten (<1 m/s)	1.5 - 2
leichte Vibrationen; mittlere Geschwindigkeiten; (1-2 m/s) und mittelhohe Frequenz der Richtungswechsel (5m/s² < α < 10 m/s²)	2 - 3
Stöße und Vibrationen; hohe Geschwindigkeiten (>2 m/s) und hochfrequente Richtungswechsel; (α > 10m/s²) hohe Schmutzbelastung	> 3

Tab. 2

Speedy Rail A - Lebensdauer

Die Lebensdauer der SRA-Linearführungen entspricht ca. 80.000 km.

EUROPE

ROLLON S.p.A. - ITALIEN (Hauptsitz)

Via Trieste 26 I-20871 Vimercate (MB) Phone: (+39) 039 62 59 1 www.rollon.it - infocom@rollon.it

ROLLON B.V. - NIEDERLANDE

Ringbaan Zuid 8 6905 DB Zevenaar Phone: (+31) 316 581 999 www.rollon.nl - info@rollon.nl

AMERICA

ROLLON CORP. - USA

101 Bilby Road. Suite B Hackettstown, NJ 07840 Phone: (+1) 973 300 5492

www.rolloncorp.com - info@rolloncorp.com

ASIA

ROLLON LTD. - CHINA

No. 1155 Pang Jin Road, China, Suzhou, 215200 Phone: +86 0512 6392 1625 www.rollon.cn.com - info@rollon.cn.com

ROLLON GMBH - DEUTSCHLAND

Bonner Strasse 317-319 D-40589 Düsseldorf Phone: (+49) 211 95 747 0 www.rollon.de - info@rollon.de

ROLLON S.P.A.-RUSSLAND (Handelsvertr.)

117105, Moscow, Varshavskove shosse 17, building 1 Phone: +7 (495) 508-10-70 www.rollon.ru - info@rollon.ru

ROLLON - SÜDAMERIKA (Handelsvertr.)

R. Joaquim Floriano, 397, 2o. andar Itaim Bibi - 04534-011, São Paulo, BRASIL Phone: +55 (11) 3198 3645

www.rollonbrasil.com.br - info@rollonbrasil.com

ROLLON S.A.R.L. - FRANKREICH

Les Jardins d'Eole, 2 allée des Séquoias F-69760 Limonest

Phone: (+33) (0) 4 74 71 93 30 www.rollon.fr - infocom@rollon.fr

ROLLON GMBH - UK (Handelsvertr.)

The Works 6 West Street Olney Buckinghamshire, United Kingdom, MK46 5 HR

Phone: +44 (0) 1234964024

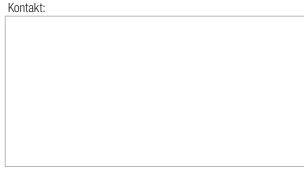
www.rollon.uk.com - info@rollon.uk.com

ROLLON INDIA PVT. LTD.

1st floor, Regus Gem Business Centre, 26/1 Hosur Road, Bommanahalli, Bangalore 560068 Phone: (+91) 80 67027066 www.rollonindia.in - info@rollonindia.in

ROLLON S.P.A. - JAPAN

3F Shiodome Building, 1-2-20 Kaigan, Minato-ku, Tokyo 105-0022 Japan Phone +81 3 6721 8487 www.rollon.jp - info@rollon.jp


Bitte beachten Sie auch unsere weiteren Produktreihen

Die Adressen unserer weltweiten Vertriebspartner finden Sie auch auf unserer Webseite www.rollon.com