

MICROFINISH-WERKZEUGE

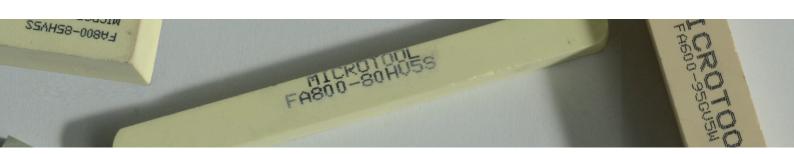
The Power of Precision

SPITZENQUALITÄTEN DURCH HOCHWERTIGE WERKZEUGE

Inhalt

_2	MicroTool-Qualität	
3	Stein-Spezifikationen	
4/5	Stein-Zusammensetzung	
6/7	Stein-Abmessungen	
8/9	Finishband-Technologie	
10/11	Zusätzliche Informationen	
12	Impressum	

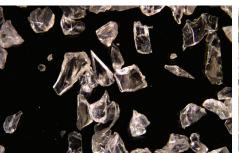
Um bei der Superfinish-Bearbeitung höchstmögliche Qualität und Leistung zu erzielen, ist die Anwendung hochwertiger Werkzeuge erforderlich. So gewährleisten nur eine gleichmäßige Korngröße und -struktur die Einhaltung engster Parameter. Mit den vom Maschinenhersteller angebotenen Werkzeugen ist die optimale Kombination von Maschine und Werkzeug gegeben, da sie in enger Abstimmung mit der Prozessentwicklung hergestellt worden sind.


Das Werkzeug-Programm MicroTool von Thielenhaus Microfinish umfasst Steinwerkzeuge als Abrasiv und CBN, Bandwerkzeuge als Abrasiv und Diamant sowie Polierwerkzeuge. Sämtliche Produkte zeichnen sich durch höchste Standzeiten und kaum veränderte Qualitäten bei unterschiedlichen Chargen aus. Bei der Verwendung von MicroTool ist daher ein Anpassen der Bearbeitungsparameter beim Werkzeugwechsel nicht mehr erforderlich.

KONVENTIONELLE SCHLEIFMITTEL

Schleifmittel	Körnung	Härte	Struktur	Bindung	Behandlung
Aluminiumoxid	240	20 – Hart	A – Dicht	V – Verglast	W – Wachs
WA	280	1	1		
FA	320			R – Harz	S – Schwefel
Siliziumkarbid	400				
GC	500				
С	600				
Keramik	800				
SA	1.000	T	1		
Mischungen	1.200	•	▼		
FG	1.500	280 - Weich	N – Offen		
Beispiel:					
WA	1.000 –	70	G	V2	S

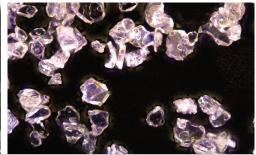
DIE PERFORMANCE VON MICROTOOL-SCHLEIFMITTELN


SCHLEIFMITTELTYPEN

Aluminiumoxid entsteht bei der Raffinierung von Bauxiterzen. Der Feinheitsgrad bestimmt sich durch Farbe und Zähigkeit der Körnung. Thielenhaus MicroTool verwendet zwei Typen von hochreinen Aluminiumoxidkörnern: Microgrit (WA) ist die reinste und brüchigste Form von Aluminiumoxid. Beim Edelkorund weiß (FA) handelt es sich ebenfalls um eine hochreine Körnung, die eine eher winklige Form besitzt. Es wird typischerweise für die Schruppbearbeitung verwendet.

Siliziumkarbid wird in einem Ofen aus weißem Quarz, Petrolkoks, Sägespänen und Salz zusammengeschmolzen. Härte und Reinheit bestimmen sich durch die Färbung der Kristalle. Grünes Siliziumkarbid (GC) ist die reinste Form, schwarzes Siliziumkarbid (C) dagegen eine weniger reine Form. Siliziumkarbid ist härter als Aluminiumoxid und besitzt exzellente Eigenschaften für die Oberflächenbearbeitung.

Obwohl **CBN- und Diamant-Materialien** aufgrund des Kostenaufwands und ihrer Leistungseinschränkungen branchenweit nur mäßige Anerkennung genießen, erfreuen sie sich zunehmender Beliebtheit bei Sonderanwendungen. Thielenhaus MicroTool hat sowohl Diamant- als auch CBN-Produkte für die Anwendung mit Keramik, M50 und anderen Materialien für orthopädische Implantate, Lager und Autoteile im Programm. Darüber hinaus bietet Thielenhaus MicroTool superabrasive Schleifmittel für die Produktion von Kegellagern aus gehärtetem Stahl an.


Grafit ist kein Schleifmittel, wird aber zuweilen zur Verbesserung der Ästhetik von Werkstücken verwendet. Grafitmischungen und Schleifmittel wie Aluminiumoxid vereinigen die Vorteile der Schmierfähigkeit von Grafit und der Schneidwirkung des Schleifmaterials.

Geschmolzenes weißes Aluminiumoxid

Grünes Siliziumkarbid

Gesintertes weißes Aluminiumoxid

KÖRNUNG

Beim der Superfinish-Bearbeitung werden Werkzeuge mit feiner Körnung zur Erzielung der gewünschten Oberflächenbeschaffenheit eingesetzt. Die Körnung des Schleifmittels wird von Organisationen wie der FEPA (Federation of European Producers of Abrasives) und JIS (Japanese Industrial Standards) bestimmt. Die meisten Superfinish-Prozesse nutzen konventionelle Schleifmittel mit Körnungen zwischen 400 und 1.200 auf der FEPA-Skala. Für manche Anwendungen wie z. B. Miniaturlager werden auch Partikelgrößen im Submikron-Bereich benötigt. Grundsätzlich lässt sich mit feineren Körnungen die Oberflächenbeschaffenheit verbessern. Die Tabelle rechts zeigt einen Vergleich der nominalen Körnungen herkömmlicher Schleifpartikel gemäß FEPA- und JIS-Standards.

FEPA	JIS	Mikron
320	500	35
400	700	23
500	1.000	18
600	1.200	14
800	2.000	8
1.000	3.000	5
1.200	4.000	3
1.500	6.000	1

HÄRTE

Der Härtegrad wird durch die Festigkeit der Schleifmittel auf dem Trägermaterial bestimmt. Die Härte eines Schleifsteins ergibt sich vor allem durch die Menge des Bindemittels, das bei der Herstellung verwendet wird. Da die meisten Anwendungen nur geringe Toleranzen bei Abtragsleistung, Oberflächenanforderungen und Zykluszeiten erlauben, muss die Produktion feiner Körnungen und gebundener Schleifmittel genau kontrolliert werden. Thielenhaus MicroTool verwendet eine extrem genaue Gradeinstufung, um eine einheitliche Produktion von Schleifsteinen und -scheiben zu gewährleisten. Die folgende Tabelle listet einige Faktoren auf, die bei der Auswahl von Härtegraden zu berücksichtigen sind:

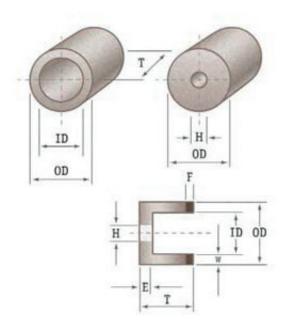
ÜBERLEGUNGEN ZUM HÄRTEGRAD

Härtere Grade	Weichere Grade	
Geringe Abtragsleistung	Hohe Abtragsleistung	
Längere Finishstein-Lebensdauer	Flexiblere Schnittvorgänge	
Feinere Oberflächen	Rauere Oberflächen	
Kleine Kontaktflächen	Große Kontaktflächen	
Oberflächenbearbeitungspositionen	Rauere Positionen	
Höherer Schleifsteindruck	Geringerer Finishsteindruck	
Verwendung mit weicheren Materialien	Verwendung mit härteren Materialien	

STRUKTUR

Die Struktur wird durch Volumen und Anordnung der Schleifkörner in den Schleifsteinen oder -scheiben bestimmt. Die Leistung von Schleifwerkzeugen richtet sich nach der Kombination von Schleifkörnung, Bindung und Struktur. Der Abstand zwischen Schleifkörnern und -poren sollte gleichmäßig sein, um eine einheitliche Performance zu gewährleisten. Offen strukturierte Produkte bieten bessere Freiräume und sind weniger verschleißanfällig als geschlossene Schleifwerkzeuge.

BINDUNGEN


Bindungen werden für die Fixierung von Körnungen verwendet. Zwar sind auch Kunstharzbindungen denkbar, Superfinish-Werkzeuge werden aber zumeist mit keramischen Bindungen gefertigt, die zur Herstellung hochpräziser Produkte verwendet werden. Keramische Bindungen eignen sich hervorragend für automatisierte Prozesse. Diese Bindungen sind selbstabrichtend, d. h. der Produktionsvorgang muss nicht zum Abrichten unterbrochen werden. Das MicroTool-Programm enthält eine Vielzahl an Bindungen speziell für gebundene Schleifmittel mit feiner Körnung.

BEHANDLUNG

Zum Füllen von Poren wird in der Regel Schwefel oder Wachs verwendet. Dies gewährleistet nicht nur eine Schmierung des Kontaktbereichs, sondern auch eine Verstärkung der Schleifpartikel. Behandelte Werkzeuge haben eine bessere Härte, längere Lebensdauer, besseres Schneidverhalten, ermöglichen feinere Oberflächen und sind weniger verschleißanfällig. Schwefel bietet bei Schleifsteinen meist eine höhere Härte als Wachs. Wachs kommt dort zum Einsatz, wo die für Schwefel typische Fleckenbildung vermieden werden soll oder die Filtration eine hohe Priorität einnimmt.

SCHLEIFSCHEIBENABMESSUNGEN

TOPFSCHEIBENFORMEN

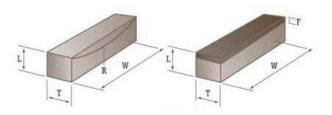
Konventionell: OD/ID X T X H; E Superabrasiv: AD/ID X T X H; E (F)

EIGENSCHAFTEN UND TYPEN

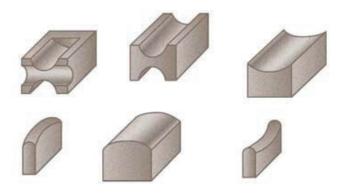
Eigenschaften: Schlitze, Fasen, Löcher, Winkel

Typen: Topfscheiben – montiert und in

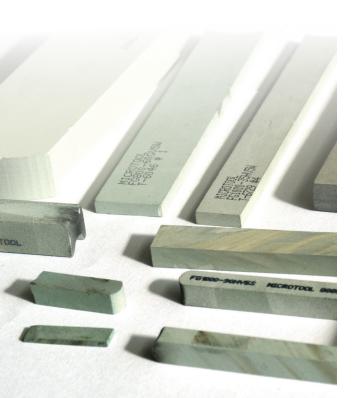
einem Stück Felgenscheiben


Zylinder

Montierte Topfscheiben

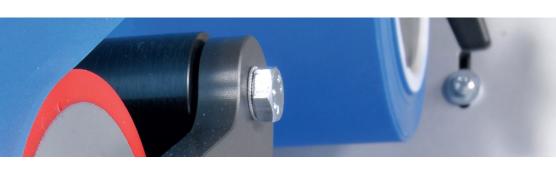

SCHLEIFSTEINABMESSUNGEN

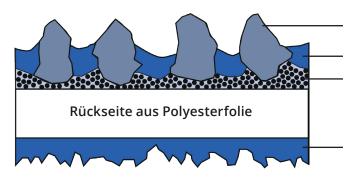
SCHLEIFSTEINFORMEN


Konventionell T X B X L; R Konventionell T X B X L; R (F)

SONDERFORMEN

VERPACKUNG UND ETIKETTIERUNG




ABRASIVE BANDTECHNOLOGIE FÜR DIE MICROFINISH-BEARBEITUNG

Erstklassige, wärmebehandelte Aluminiumoxidkörner, Präzisionsbeschichtungen, haltbare Verbund- und Reibungsbeschichtungstechnologie sind einzigartig für anspruchsvolle Superfinish-Anwendungen, die eine hohe Abtragsrate und eine hervorragende Oberflächenqualität bieten.

EIGENSCHAFTEN	LEISTUNGEN
Erstklassiges, wärmebehandeltes Präzisions-Feinstkorn-Aluminiumoxid	Überlegene Materialabtragsrate und gleichmäßiges Finish
Robustes, langlebiges und leistungs- starkes, verstärktes Klebeverbund- system	Höhere Abtragsrate bei besserer Oberflächengüte Ausgezeichnete Haftung für die Aufrechterhaltung des Korns trägt zu kratzer- freien, gleichmäßigen und beständigen Oberflächen bei Ausgezeichnete Haltbarkeit für lange Lebensdauer
Kräftige und gleichmäßige 5 mm starke Polyester-Bandrückseite mit nicht-ab- rasiver Anti-Rutsch-Beschichtung	Hervorragende Reibungskontrolle Exzellenter Schnitt und bestes Finish durch fehlenden Bandschlupf Nicht-abrasive Beschichtung für minimalen Werkzeugverschleiß Für weiche und harte Schuhe geeignet
Voller Kornbereich: 100 – 9 μ	Umfangreiches Angebot an Körnungen für eine breite Palette von Microfinish-/ Superfinish-Bandanwendungen
Farbkodierter Aufdruck auf der Rückseite nach Korngröße	Einfache Produkterkennung
Erhältlich in gerader Form und mit gewellten Kanten	Hochpräzisionsschneiden: +/- 0,03 mm Maßgeschneiderte Wellen mit abgerundeten Ecken für eine perfekte Bearbeitung von Kurbelwellen und gebogenen Werkstücken Ermöglicht höhere Teiletoleranzen

MT3 MICROFINISH-BANDAUFBAU

μ-abgestufte A/O-Körner

Zähe, haltbare Harzschicht für hohen Materialabtrag Harz mit hoher Haftfähigkeit

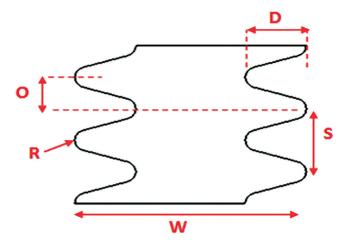
Spezielle Beschichtung der Rückseite für die Reibungskontrolle

EIGENSCHAFTEN

Farbkodierter Rückenaufdruck nach Korngröße Spezielle Reibbeschichtung für weiche und harte Schuhe

ABRASIVE KORNGRÖSSE	RÜCKSEITE	VERFÜGBARE FORMEN
80 μm 60 μm 50 μm 40 μm 30 μm 20 μm	5 μ- und 3 μ-Polyester- träger mit abrasiver Beschichtung	 Gerade Rollen Wellenförmige Rollen Umlaufende Bänder Scheiben und Blätter mit oder ohne druckempfindlichen Klebstoff
	80 μm 60 μm 50 μm 40 μm 30 μm 20 μm	80 μm 60 μm 50 μm 40 μm 30 μm 20 μm 15 μm

HAUPTANWENDUNGEN


- Nocken und Zapfen bei Nockenwellen
- Rohr, Stangenwellen, Drucklagerwandung und Öldichtungen von Kurbelwellen
- Getriebewellen
- Achsen
- Zylinderwellen
- Hydraulische Schieberventile
- Kompressorwellen
- Abdeckungen von Drehmomentwandlern
- Ausgleichswelle von Motoren
- Antriebsritzel-Baugruppen
- Turbinenwelle
- Getriebe
- Lager
- Walzenbearbeitung

EINZELHEITEN ZU DEN WELLENFÖRMIGEN BÄNDERN

- W: Gesamtbreite
- D: Tiefe von Gipfel zu Tal
- S: Schritt von Spitze zu Spitze
- R: Radius
- O: Versatz von der Spitze auf einer Seite zur Spitze auf der gegenüberliegenden Seite (Empfehlung: O = S/2 oder Null)

MAXIMALE LEISTUNG DURCH WERKZEUGVERSUCHE UND TECHNOLOGIEUNTERSTÜTZUNG

MÖGLICHE ZIELSETZUNGEN

- > Neue Maschineninstallation
- > Änderung der Qualitätsparameter
- Notwendigkeit der Verbesserung der Werkstückoberfläche/-geometrie
- > Senkung der Stückkosten
- Änderung bei Upstream-Prozessen wie etwa beim Schleifen
- > Implementierung neuer Kühlmittel
- > Gesteigerte Produktivität
- Neues Werkstück

VORGEHENSWEISE

1. Definition von Zielen

Entwicklung eines klaren Verständnisses der Testziele sowie von möglichen Prozessabwägungen. Wenn das Ziel z. B. die Verlängerung der Standzeit ist, kann der Einsatz eines härteren Werkzeugs die Schneidleistung beeinträchtigen.

2. Testvorbereitung

Stellen Sie sicher, dass zur Durchführung sinnvoller Tests genügend Teile verfügbar sind. Prüfen Sie den Zustand der Maschine und der zu verwendenden Werkzeuge. Legen Sie die Qualität eingehender Teile unter normalen Produktbedingungen fest. Prüfen Sie Anregungen und Beschwerden von Personen, die mit dem Prozess vertraut sind.

3. Etablierung einer Messbasis

Dokumentieren Sie den aktuellen Prozess. Dazu gehören die Qualität unbearbeiteter und fertiger Teile, Abtragsleistung, Lebensdauer des Schneidwerkzeugs, Produktionsrate, Flüssigkeitsbedingungen und andere relevante Informationen.

Testdurchführung

Die Tests müssen sorgfältig protokolliert werden, um sinnvolle Vergleiche mit dem aktuellen Prozess anstellen zu können. Thielenhaus Microfinish empfiehlt, alle Tests mit der gleichen Maschine durchzuführen. Der anfängliche Fokus sollte auf der erwarteten Werkstückqualität liegen, bevor Produktverbesserungen oder Kosteneinsparungen implementiert werden.

5. Ergebnisanalyse

Der Mehrwert alternativer Schleifwerkzeuge wird durch den Vergleich der Testergebnisse mit dem Basis-Prozess bestimmt. Die Ergebnisse sind zu quantifizieren und die entsprechenden Kosten zu berechnen.

ALLGEMEINE PROBLEME UND ABHILFEMASSNAHMEN

PROBLEM	BETRIEBSPARAMETER	AUSWAHL DES SCHLEIFWERKZEUGS	
Oberfläche			
Oberfläche zu rau	Spindel-UpM steigern	Feinere Körnung	
	Oszillation verringern	Härterer Grad	
	Druck verringern	Dichtere Struktur	
Oberfläche zu fein	Spindel-UpM verringern	Grobere Körnung	
	Oszillation steigern	Weicherer Grad	
	Druck erhöhen	Offenere Struktur	
Materialabtrag			
Übermäßiger Schleifsteinverschleiß	Spindel-UpM steigern	Härterer Grad	
	Oszillation verringern	Dichtere Struktur	
	Druck verringern		
	Kühlmittelfluss steigern		
Materialabtrag verringern	Druck erhöhen	Weicherer Grad	
	Oszillation steigern	Grobere Körnung	
	Spindel-UpM verringern	Offenere Struktur	
	Oberfläche eingehender Produkte prüfen		
	Kühlmittel prüfen		
Teilequalität			
Teil unrund	Druck verringern	Weicherer Grad	
	Spindel-UpM verringern	Offenere Struktur	
	Oszillation steigern		
	Rundlauf prüfen		
Rattermarken	Eingangsqualität prüfen		
Prozessprobleme			
Übermäßige Hitzeentwicklung	Kühlmitteltemperatur prüfen	Weicherer Grad	
	Druck verringern		
	Kühlmittelfluss steigern		
Verschleiß	Spindel-UpM verringern	Weicherer Grad	
	Oszillation steigern	Grobere Körnung	
	Kühlmittel prüfen	Offenere Struktur	
Steinverschleiß			
Ungleichmäßiger Schleifstein/-scheiber	า-		
verschleiß	Spindel-/Teil-Ausrichtung prüfen	Härterer Grad	
Übermäßiger Schleifsteinverschleiß	Spindel-UpM steigern	Härterer Grad	
	Oszillation verringern	Dichtere Struktur	
	Druck verringern		

The Power of Precision.

THIELENHAUS TECHNOLOGIES

St. Gallerstraße 52
9548 Matzingen, Schweiz

\$\chi\$ +41 (0) 5 23 76 26 20

\$\equiv +41 (0) 5 23 76 26 19

\$\times\$ switzerland@thielenhaus.com

www.superfinish.ch

Thielenhaus Superfinish Innovation AG

Thielenhaus Microfinish Corporation 42925 W. Nine Mile Road Novi, MI 48375, USA \$\(^+ 1 2 48 3 49-94 50\)\$\(= +1 2 48 3 49-94 57\)\$

■ usa@thielenhaus.com www.thielenhaus.us

www.thielenhaus.com

Thielenhaus Microfinish do Brasil Rua Dona Francisca, 8300 -Sala 7 – Unid. 15 – Bloco L Condomínio Perini Business Park CEP 89219-600 Joinville/SC, Brasilien \$\mathbb{\center}\$ + 55 47 9994-6094 \$\mathbb{\square}\$ brazil@thielenhaus.com

www.thielenhaus.us

www.thielenhaus.cn

Thielenhaus Microfinish INDIA PVT LTD M-14, 7 th Cross
Peenya 1st Stage
Peenya Industrial Area
Bangalore 560058. Karnataka State, Indien

\$\(^{\text{t}}\) +91 77 19 02 22 00

\$\equiv \] +91 95 52 28 83 00

\$\text{v}\] india@thielenhaus.com

www.thielenhaus.us

