

Jongen Werkzeugtechnik

Jongen UNI-MILL Vollhartmetall-Bohrer

VHB 55508 DR20 8xD

Die Werkzeuge

Diese Jongen-Vollhartmetall-Bohrwerkzeuge wurden speziell für das universelle Bohren unterschiedlichster Stähle, Edelstähle, wie auch Gusswerkstoffe konzipiert.

Innerhalb dieses Programms werden Werkzeuge im Durchmesserbereich 2,0mm bis 20mm angeboten.

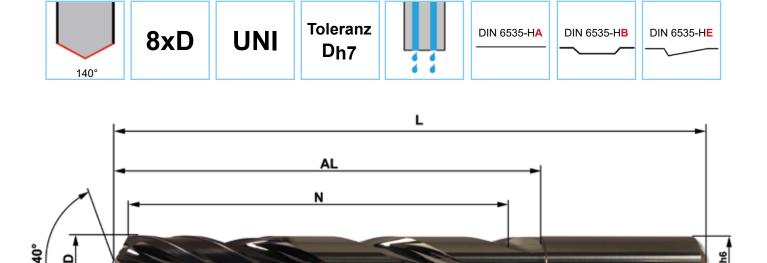
Durch die Stirngeometrie wird ein präzises Anbohren ermöglicht, durch die großen Spanräume wird ein optimaler Abfluss der Späne, auch bei Bohrtiefen bis 8xD erreicht.

Alle Werkzeuge sind mit internen Kühlmittelbohrungen ausgestattet.

Bis Schaftdurchmesser 6mm sind die Bohrer mit 2 Kühlkanälen, ab Schaftdurchmesser 8mm sind die Bohrer mit 4 Kühlkanalbohrungen ausgeführt. Somit wird auch bei größeren Durchmessern eine optimale Kühlung der Querschneide im Bohrprozess sichergestellt.

Die Werkzeuge im Durchmesserbereich 2,0 bis 10mm sind in $1_{/10}$ Abstufungen erhältlich.

Eigenschaften


Merkmal	Vorteil
Universelles Programm	 Zweischneidige Bohrwerkzeuge zum Einsatz auf Fräs- und Drehmaschinen Vielseitig einsetzbar für nahezu alle Ein- und Austrittsituationen Gesenkte Lagerhaltungskosten durch Reduzierung der Werkzeugvielfalt
Optimierte Macro-Geometrie	Reduziert den SchnittdruckExzellente AbtragsratenExtrem lange Standzeit
Polierte Spannuten	 Besserer Späneabfluss und höhere Spanabfuhrgeschwindigkeit durch weniger Reibungswiderstand Spänewickler werden vermieden Reduzieren Zerspankräfte
Lange gerade Hauptschneide	 Hohe Produktivität und Bohrlochqualität auch bei hohen Vorschüben und Schnittgeschwindigkeiten Verringerte Schnittkräfte Verbesserte Standzeit Dringen sauber in das Material ein und verlassen dieses ohne Gratbildung

Eigenschaften

Merkmal	Vorteil
Spitzenwinkel 140°	Exzellente Zentrierfähigkeit
Facettenanschliff an der Spitze	Absolute Zentriergenauigkeit durch perfekt ausgebildete Spitze
Doppelte Führungsfase	 Erhöht die Bohrungspräzision und die Bohrungsfluchtung durch die Führung an 4 speziell zueinander angeordneten Anlagen Die besonders hohe Oberflächenqualität auf den Führungsfasen vermindert Reibung mit der Bohrungswand trotz der Führung auf insgesamt 4 Fasen
Optimierte Micro-Geometrie	 Sehr hohe Standzeiten durch besten Verbund von Beschichtung und Hartmetall Stabile Schneidkante für sichere Bearbeitungsprozesse
Optimierte Nutform mit Auslaufradius	Umformung des Spans in der Nut und nicht an der Bohrungswandung → Stauchung und Verklebungen werden vermieden → höhere Oberflächenqualität → weniger Reibung → höhere Prozesssicherheit
Schaft	Bei Schaftdurchmesser <6mm nach DIN 6535-HA, ab Schaftdurchmesser 6mm sind 3 Varianten möglich VHB 55508A => Schaft nach DIN 6535-HA VHB 55508B => Schaft nach DIN 6535-HB VHB 55508E => Schaft nach DIN 6535-HE
Interne Bohrungen für Kühlschmiermittel	 Optimaler Späneabfluss Längere Standzeiten durch geringere Temperaturen Geringer Wärmeeintrag in das Werkstück Erhöhte Kühlleistung im Spitzenbereich auch in tiefen Bohrungen Erhöhtes Spülvolumen durch insgesamt höhere Kanalquerschnitte* (*durch 4 statt 2 Kühlkanäle ist in Summe ein höherer Kühlmitteldurchfluss (ca. 25%) möglich)
Hartmetall und Beschichtung = Sorte DR20	 Feinstkorn-Hartmetall im DIN-ISO-Bereich K20-40 Sehr glatte AlTiN-Supernitrid-Beschichtung → hohe Stabilität und Zuverlässigkeit → geringe Bruchanfälligkeit → universell einsetzbar → hohe Bohrungsqualität
Werkzeuge können wiederaufbereitet werden	Hoher Kosten-Nutzen-Faktor

Technische Daten VHB 55508 DR20

Bei Schaftdurchmesser <6mm sind die Vollhartmetallbohrer nur mit Schaft nach DIN 6535-HA (Glattschaft) verfügbar.

Ab Schaftdurchmesser 6mm sind verschiedene Schaft-Varianten verfügbar.

Schaft nach DIN 6535-HA (Glattschaft)

=> Bestellnummer VHB 55508A-... DR20

Schaft nach DIN 6535-HB (Weldon-Schaft)

=> Bestellnummer VHB 55508B-... DR20

Schaft nach DIN 6535-HE (Whistle-Notch)

=> Bestellnummer VHB 55508E-... DR20

Artikel-Nummer: VHB 55508*-...

(bitte anstelle von * Schaftform angeben und Rest der Artikelnummer aus untenstehender Tabelle ergänzen)

VHB 55508*-	D	AL	N	L	d	Z	IK
0200 DR20	2,00	31,3	20	61,5	3	2	2
0210 DR20	2,10	31,3	21	61,5	3	2	2
0220 DR20	2,20	31,3	22	61,5	3	2	2
0230 DR20	2,30	31,3	23	61,5	3	2	2
0240 DR20	2,40	31,3	24	61,5	3	2	2
0250 DR20	2,50	31,3	25	61,5	3	2	2
0260 DR20	2,60	31,3	26	61,5	4	2	2
0270 DR20	2,70	31,3	27	61,5	4	2	2
0280 DR20	2,80	31,3	28	61,5	4	2	2
0290 DR20	2,90	31,3	29	61,5	4	2	2
0300 DR20	3,00	40,0	30	82,0	6	2	2
0310 DR20	3,10	40,0	31	82,0	6	2	2
0320 DR20	3,20	40,0	32	82,0	6	2	2
0330 DR20	3,30	40,0	33	82,0	6	2	2
0340 DR20	3,40	40,0	34	82,0	6	2	2
0350 DR20	3,50	40,0	35	82,0	6	2	2
0360 DR20	3,60	40,0	36	82,0	6	2	2
0370 DR20	3,70	40,0	37	82,0	6	2	2
0380 DR20	3,80	51,8	38	95,0	6	2	2
0390 DR20	3,90	51,8	39	95,0	6	2	2

VHB 55508*-	D	AL	N	L	d	Z	IK
0400 DR20	4,00	51,8	40	95,0	6	2	2
0410 DR20	4,10	51,8	41	95,0	6	2	2
0420 DR20	4,20	51,8	42	95,0	6	2	2
0430 DR20	4,30	51,8	43	95,0	6	2	2
0440 DR20	4,40	51,8	44	95,0	6	2	2
0450 DR20	4,50	51,8	45	95,0	6	2	2
0460 DR20	4,60	51,8	46	95,0	6	2	2
0470 DR20	4,70	51,8	47	95,0	6	2	2
0480 DR20	4,80	51,8	48	95,0	6	2	2
0490 DR20	4,90	51,8	49	95,0	6	2	2
0500 DR20	5,00	62,5	50	103,0	6	2	2
0510 DR20	5,10	62,5	51	103,0	6	2	2
0520 DR20	5,20	62,5	52	103,0	6	2	2
0530 DR20	5,30	62,5	53	103,0	6	2	2
0540 DR20	5,40	62,5	54	103,0	6	2	2
0550 DR20	5,50	62,5	55	103,0	6	2	2
0560 DR20	5,60	62,5	56	103,0	6	2	2
0570 DR20	5,70	62,5	57	103,0	6	2	2
0580 DR20	5,80	62,5	58	103,0	6	2	2
0590 DR20	5,90	62,5	59	103,0	6	2	2

Artikel-Nummer: VHB 55508*-...

(bitte anstelle von * Schaftform angeben und Rest der Artikelnummer aus untenstehender Tabelle ergänzen)

\(\(\)\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\		A1	N.			-	11/
VHB 55508*-	D	AL	N	L	d	Z	IK
0600 DR20	6,00	62,5	59	103,0	6	2	2
0610 DR20	6,10	77,0	60	117,0	8	2	4
0620 DR20	6,20	77,0	61	117,0	8	2	4
0630 DR20	6,30	77,0	62	117,0	8	2	4
0640 DR20	6,40	77,0	63	117,0	8	2	4
0650 DR20	6,50	77,0	64	117,0	8	2	4
0660 DR20	6,60	77,0	65	117,0	8	2	4
0670 DR20	6,70	77,0	66	117,0	8	2	4
0680 DR20	6,80	77,0	66	117,0	8	2	4
0690 DR20	6,90	77,0	67	117,0	8	2	4
0700 DR20	7,00	77,0	68	117,0	8	2	4
0710 DR20	7,10	77,0	69	117,0	8	2	4
0720 DR20	7,20	77,0	70	117,0	8	2	4
0730 DR20	7,30	77,0	71	117,0	8	2	4
0740 DR20	7,40	77,0	72	117,0	8	2	4
0750 DR20	7,50	77,0	73	117,0	8	2	4
0760 DR20	7,60	77,0	73	117,0	8	2	4
0770 DR20	7,70	77,0	74	117,0	8	2	4
0780 DR20	7,80	77,0	74	117,0	8	2	4
0790 DR20	7,90	77,0	74	117,0	8	2	4
0800 DR20	8,00	77,0	74	117,0	8	2	4
0810 DR20	8,10	92,5	75	140,0	10	2	4
0820 DR20	8,20	92,5	76	140,0	10	2	4
0830 DR20	8,30	92,5	77	140,0	10	2	4
0840 DR20	8,40	92,5	78	140,0	10	2	4
0850 DR20	8,50	92,5	79	140,0	10	2	4
0860 DR20	8,60	92,5	80	140,0	10	2	4
0870 DR20	8,70	92,5	81	140,0	10	2	4
0880 DR20	8,80	92,5	81	140,0	10	2	4
0890 DR20	8,90	92,5	82	140,0	10	2	4
0900 DR20	9,00	92,5	83	140,0	10	2	4
0910 DR20	9,10	92,5	84	140,0	10	2	4
0920 DR20	9,20	92,5	85	140,0	10	2	4
0930 DR20	9,30	92,5	86	140,0	10	2	4
0940 DR20	9,40	92,5	87	140,0	10	2	4
0950 DR20	9,50	92,5	88	140,0	10	2	4
0960 DR20	9,60	92,5	89	140,0	10	2	4
0970 DR20	9,70	92,5	90	140,0	10	2	4
0980 DR20	9,80	92,5	90	140,0	10	2	4
0990 DR20	9,90	92,5	90	140,0	10	2	4
1000 DR20	10,00	92,5	90	140,0	10	2	4
1010 DR20	10,10	106,0	91	156,0	12	2	4
1020 DR20	10,20	106,0	92	156,0	12	2	4
1030 DR20	10,30	106,0	93	156,0	12	2	4
1040 DR20	10,40	106,0	94	156,0	12	2	4
1050 DR20	10,50	106,0	95	156,0	12	2	4
1060 DR20	10,60	106,0	96	156,0	12	2	4
1070 DR20	10,70	106,0	97	156,0	12	2	4
1080 DR20	10,80	106,0	97	156,0	12	2	4
1090 DR20	10,90	106,0	98	156,0	12	2	4

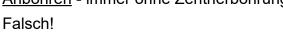
VHB 55508*-	D	AL	N	L	d	Z	IK
1100 DR20	11,00	106,0	99	156,0	12	2	4
1110 DR20	11,10	106,0	100	156,0	12	2	4
1120 DR20	11,20	106,0	101	156,0	12	2	4
1130 DR20	11,30	106,0	101	156,0	12	2	4
1140 DR20	11,40	106,0	102	156,0	12	2	4
1150 DR20	11,50	106,0	102	156,0	12	2	4
1160 DR20	11,60	106,0	102	156,0	12	2	4
1170 DR20	11,70	106,0	103	156,0	12	2	4
1180 DR20	11,80	106,0	103	156,0	12	2	4
1190 DR20	11,90	106,0	103	156,0	12	2	4
1200 DR20	12,00	106,0	103	156,0	12	2	4
1220 DR20	12,20	117,5	105	168,0	14	2	4
1250 DR20	12,50	117,5	107	168,0	14	2	4
1280 DR20	12,80	117,5	110	168,0	14	2	4
1300 DR20	13,00	117,5	112	168,0	14	2	4
1350 DR20	13,50	117,5	115	168,0	14	2	4
1380 DR20	13,80	117,5	116	168,0	14	2	4
1400 DR20	14,00	117,5	116	168,0	14	2	4
1420 DR20	14,20	133,0	117	188,0	16	2	4
1450 DR20	14,50	133,0	120	188,0	16	2	4
1480 DR20	14,80	133,0	122	188,0	16	2	4
1500 DR20	15,00	133,0	124	188,0	16	2	4
1550 DR20	15,50	133,0	128	188,0	16	2	4
1580 DR20	15,80	133,0	130	188,0	16	2	4
1600 DR20	16,00	133,0	132	188,0	16	2	4
1650 DR20	16,50	147,5	136	202,0	18	2	4
1680 DR20	16,80	147,5	139	202,0	18	2	4
1700 DR20	17,00	147,5	140	202,0	18	2	4
1750 DR20	17,50	147,5	144	202,0	18	2	4
1780 DR20	17,80	147,5	146	202,0	18	2	4
1800 DR20	18,00	147,5	147	202,0	18	2	4
1850 DR20	18,50	162,0	151	220,0	20	2	4
1880 DR20	18,80	162,0	153	220,0	20	2	4
1900 DR20	19,00	162,0	155	220,0	20	2	4
1950 DR20	19,50	162,0	159	220,0	20	2	4
1980 DR20	19,80	162,0	160	220,0	20	2	4
2000 DR20	20,00	162,0	160	220,0	20	2	4

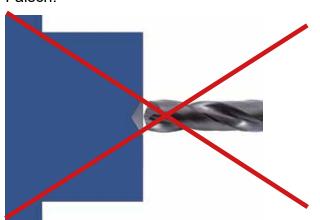
AL=Absetzlänge IK = Anzahl der internen Kühlkanäle

Schnittdaten

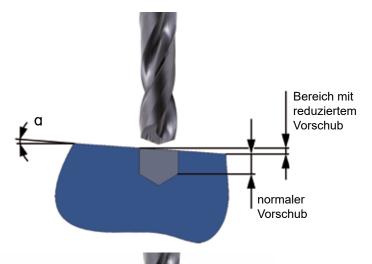
Baustahl Unlegierter Stahl <800 N/mm²	2 3 4 5 6 7 8 9 10	120 120 120 120 120 120 120 120 120	(90 - 140) (90 - 140) (90 - 140) (90 - 140) (90 - 140) (90 - 140) (90 - 140)	0,065 0,094 0,120 0,143 0,165 0,186 0,204	(0,062 - 0,074) (0,089 - 0,105) (0,114 - 0,135) (0,136 - 0,161)	19.099 12.732 9.549 7.639	1.249 1.194 1.143 1.096
Unlegierter Stahl	4 5 6 7 8 9 10	120 120 120 120 120 120	(90 - 140) (90 - 140) (90 - 140) (90 - 140) (90 - 140)	0,120 0,143 0,165 0,186	(0,114 - 0,135) (0,136 - 0,161)	9.549	1.143
Unlegierter Stahl	5 6 7 8 9 10	120 120 120 120 120	(90 - 140) (90 - 140) (90 - 140) (90 - 140)	0,143 0,165 0,186	(0,136 - 0,161)		
Unlegierter Stahl	6 7 8 9 10	120 120 120 120	(90 - 140) (90 - 140) (90 - 140)	0,165 0,186		7.639	1.096
Unlegierter Stahl	7 8 9 10	120 120 120	(90 - 140) (90 - 140)	0,186	(0.4E7 0.400)		
Unlegierter Stahl	8 9 10 11	120 120	(90 - 140)	-	(0,157 - 0,186)	6.366	1.052
Unlegierter Stahl	9 10 11	120	,	0.204	(0,176 - 0,209)	5.457	1.013
Unlegierter Stahl	10 11		(90 - 140)	0,204	(0,194 - 0,230)	4.775	976
Unlegierter Stahl	11	120	(30 - 170)	0,222	(0,211 - 0,249)	4.244	941
			(90 - 140)	0,238	(0,226 - 0,268)	3.820	909
<800 N/mm²	10	120	(90 - 140)	0,253	(0,241 - 0,285)	3.472	879
4000 IV/IIIII	12	120	(90 - 140)	0,267	(0,254 - 0,301)	3.183	851
	13	120	(90 - 140)	0,281	(0,267 - 0,316)	2.938	825
	14	120	(90 - 140)	0,293	(0,279 - 0,330)	2.728	800
	15	120	(90 - 140)	0,305	(0,290 - 0,343)	2.546	777
	16	120	(90 - 140)	0,316	(0,300 - 0,356)	2.387	755
	17	120	(90 - 140)	0,327	(0,310 - 0,368)	2.247	734
	18	120	(90 - 140)	0,337	(0,320 - 0,379)	2.122	715
	19	120	(90 - 140)	0,346	(0,329 - 0,389)	2.010	696
	20	120	(90 - 140)	0,355	(0,337 - 0,400)	1.910	678
	2	100	(75 - 120)	0,062		15.915	987
			,		(0,057 - 0,070)		
	3 4	100	(75 - 120)	0,087	(0,082 - 0,097)	10.610 7.958	919
		100	(75 - 120)	0,108	(0,103 - 0,122)		860
	5	100	(75 - 120)	0,127	(0,121 - 0,143)	6.366	808
	-	100	(75 - 120)	0,144	(0,136 - 0,161)	5.305	761
	7	100	(75 - 120)	0,158	(0,150 - 0,178)	4.547	720
	8	100	(75 - 120)	0,172	(0,163 - 0,193)	3.979	683
Werkzeugstahl	9	100	(75 - 120)	0,184	(0,175 - 0,207)	3.537	650
Vergütungsstahl	10	100	(75 - 120)	0,195	(0,185 - 0,219)	3.183	620
Legierter Stahl	11	100	(75 - 120)	0,205	(0,194 - 0,230)	2.894	592
800-1.200 N/mm²	12	100	(75 - 120)	0,214	(0,203 - 0,240)	2.653	567
1.200 14/111111	13	100	(75 - 120)	0,222	(0,211 - 0,250)	2.449	544
	14	100	(75 - 120)	0,230	(0,218 - 0,259)	2.274	523
	15	100	(75 - 120)	0,237	(0,225 - 0,267)	2.122	503
	16	100	(75 - 120)	0,244	(0,231 - 0,274)	1.989	485
	17	100	(75 - 120)	0,250	(0,237 - 0,281)	1.872	468
	18	100	(75 - 120)	0,255	(0,243 - 0,287)	1.768	452
	19		(75 - 120)	0,261	(0,248 - 0,293)	1.675	437
	20	100	(75 - 120)	0,266	(0,252 - 0,299)	1.592	423
	2	60	(40 - 75)	0,038	(0,035 - 0,043)	9.549	364
	3	60	(40 - 75)	0,054	(0,050 - 0,061)	6.366	345
	4	60	(40 - 75)	0,069	(0,063 - 0,077)	4.775	327
	5	60	(40 - 75)	0,082	(0,076 - 0,092)	3.820	312
	6	60	(40 - 75)	0,094	(0,086 - 0,105)	3.183	298
	7	60	(40 - 75)	0,104	(0,097 - 0,117)	2.728	285
	8	60	(40 - 75)	0,114	(0,106 - 0,129)	2.387	273
	9	60	(40 - 75)	0,123	(0,114 - 0,139)	2.122	262
	10	60	(40 - 75)	0,132	(0,122 - 0,148)	1.910	252
Edelstahl	11	60	(40 - 75)	0,140	(0,129 - 0,157)	1.736	243
Hochlegierter Stahl	12	60	(40 - 75)	0,147	(0,136 - 0,165)	1.592	234
	13	60	(40 - 75)	0,154	(0,142 - 0,173)	1.469	226
	14	60	(40 - 75)	0,160	(0,148 - 0,180)	1.364	218
	15	60	(40 - 75)	0,166	(0,153 - 0,187)	1.273	211
	16	60	(40 - 75)	0,171	(0,159 - 0,193)	1.194	205
	17	60	(40 - 75)	0,177	(0,163 - 0,199)	1.123	198
	18	60	(40 - 75)	0,182	(0,168 - 0,204)	1.061	193
	19	60	(40 - 75)	0,186	(0,172 - 0,209)	1.005	187
	20	60	(40 - 75)	0,190	(0,176 - 0,214)	955	182

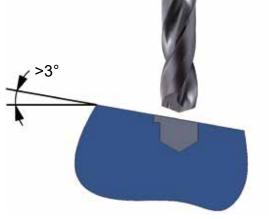
Schnittdaten


Material	D [mm]	V _C [m/min]	f [mm/U]	n [min-1]	Vf [mm/min]
	2	120 (90 - 135)	0,095 (0,090 - 0,107)	19.099	1.819
	3	120 (90 - 135)	0,133 (0,126 - 0,149)	12.732	1.690
	4	120 (90 - 135)	0,165 (0,157 - 0,186)	9.549	1.578
	5	120 (90 - 135)	0,194 (0,184 - 0,218)	7.639	1.480
	6	120 (90 - 135)	0,219 (0,208 - 0,246)	6.366	1.393
	7	120 (90 - 135)	0,241 (0,229 - 0,271)	5.457	1.316
	8	120 (90 - 135)	0,261 (0,248 - 0,294)	4.775	1.247
	9	120 (90 - 135)	0,279 (0,265 - 0,314)	4.244	1.185
Curreinen	10	120 (90 - 135)	0,296 (0,281 - 0,333)	3.820	1.129
Gusseisen GG(G)	11	120 (90 - 135)	0,310 (0,295 - 0,349)	3.472	1.078
33(3)	12	120 (90 - 135)	0,324 (0,308 - 0,364)	3.183	1.031
	13	120 (90 - 135)	0,336 (0,320 - 0,378)	2.938	988
	14	120 (90 - 135)	0,348 (0,330 - 0,391)	2.728	949
	15	120 (90 - 135)	0,358 (0,340 - 0,403)	2.546	913
	16	120 (90 - 135)	0,368 (0,350 - 0,414)	2.387	879
	17	120 (90 - 135)	0,377 (0,358 - 0,424)	2.247	848
	18	120 (90 - 135)	0,386 (0,366 - 0,434)	2.122	819
	19	120 (90 - 135)	0,394 (0,374 - 0,443)	2.010	791
	20	120 (90 - 135)	0,401 (0,381 - 0,451)	1.910	766


Für die Zwischenabmessungen sind die Parameter entsprechend anzupassen. Die aufgeführten Schnittdaten sind generell Richtwerte, die je nach Bearbeitung, Maschine und Werkstoff variieren können.

Anwendungshinweise


Anbohren - immer ohne Zentrierbohrung!



Reduzierter Vorschub bei geneigter Werkstück-Oberfläche

Reduzierter Vorschub						
(in % vom Standardwert)						
beim Anbohren geneigter Flächen						
Neigung a Vorschub						
1°	90%					
2°	80%					
3°	65%					

Bei stärkeren Neigungswinkeln muss die Fläche mit einem Fräser vorbearbeitet werden!

Jongen UNI-MILL Vollhartmetallbohrer müssen für eine optimale Leistung angemessen gekühlt werden. Nur so kann das Potential der Werkzeuge maximal ausgeschöpft werden. Die richtige Kühlung ermöglicht längere Standzeiten und höhere Schnittgeschwindigkeiten. Je höher der Kühlmitteldruck, desto besser die Bohr-Ergebnisse.

Durch die hohe Stabilität der Bohrer und die damit einhergehende Möglichkeit Bohrungen mit enger Toleranz und hoher Positionsgenauigkeit herstellen zu können, sind für die Bearbeitung möglichst stabile Maschinen erforderlich.

2/2/

Jongen Werkzeugtechnik GmbH

Siemensring 11 · 47877 Willich
Tel: 02154 / 9285-0 · Fax: 02154 / 9285 92000
Fax kostenlos: 00 800 / 56 64 36 33
www.jongen.de · email: info@jongen.de