Laser

Aus IndustryArena
Zur Navigation springen

Laser bezeichnet sowohl den physikalischen Effekt als auch das Gerät, mit dem Laserstrahlen erzeugt werden.

Laserstrahlen sind elektromagnetische Wellen. Vom Licht einer zur Beleuchtung verwendeten Lichtquelle, beispielsweise einer Glühlampe, unterscheiden sie sich vor allem durch die sonst unerreichte Kombination von hoher Intensität, oft sehr engem Frequenzbereich (monochromatisches Licht), scharfer Bündelung des Strahls und großer Kohärenzlänge. Auch sind, bei sehr weitem Frequenzbereich, extrem kurze und intensive Strahlpulse mit exakter Wiederholfrequenz möglich.[1]

Laser haben zahlreiche Anwendungsmöglichkeiten in Technik und Forschung sowie im täglichen Leben, vom einfachen Lichtzeiger (z. B. Laserpointer bei Präsentationen) über Entfernungsmessgeräte, Schneid- und Schweißwerkzeuge, Auslesen von optischen Speichermedien wie CDs, DVDs und Blu-ray Discs, Nachrichtenübertragung bis hin zum Laserskalpell und anderen Laserlicht verwendenden Geräten im medizinischen Alltag

Einteilung

Laser lassen sich anhand mehrerer Eigenschaften einteilen. Dies geschieht anhand folgender Faktoren:

Aktives Medium

Die verschiedenen Lasertypen kann man nach der Art ihres aktiven Mediums einteilen in:

Signalform

Weiterhin unterscheidet man Lasertypen nach dem Zeitverhalten ihrer induzierten Emmission, die kontinuierlich (englisch: continous wave, cw) oder gepulst verlaufen kann:

Energiezufuhr

Je nach Art der Energiezufuhr wird hauptsächlich unterschieden zwischen:


Geschichte

Albert Einstein beschrieb bereits 1916 die stimulierte Emission als eine Umkehrung der Absorption. 1928 gelang Rudolf Ladenburg der experimentelle Nachweis. Danach wurde lange gerätselt, ob der Effekt zur Verstärkung des Lichtfeldes benutzt werden könnte, da zum Erreichen der Verstärkung eine Besetzungsinversion eintreten musste. Diese ist aber in einem stabilen Zweiniveausystem unmöglich. Zunächst wurde ein Dreiniveausystem in Betracht gezogen, und die Rechnungen ergaben eine Stabilität für Strahlung im Mikrowellenbereich, 1954 realisiert im Maser von Charles H. Townes, der Mikrowellenstrahlung aussendet. Danach wurde unter anderem auch von Townes und Arthur L. Schawlow an der Übertragung des Maserprinzips auf kürzere Wellenlängen gearbeitet. Der erste Laser – ein Rubinlaser – wurde von Theodore Maiman am 16. Mai 1960 fertiggestellt.[2][3] Der erste Gaslaser, der Helium-Neon-Laser, wurde ebenfalls 1960 entwickelt (Ali Javan, William R. Bennett, Donald R. Herriott).

Geprägt wurde der Begriff Ende der 1950er Jahre[4] durch Gordon Gould in Anlehnung an den Maser; Gould nutzte den Begriff erstmals 1957 in seinen Notizen. Frühe Veröffentlichungen nannten den Laser noch optical maser (optischer Maser).

Die weitere Entwicklung führte dann zunächst zu verschiedenen Gaslasern (Sauerstoff-, Stickstoff-, CO2-Laser, He-Ne-Laser[5]) und danach zu Farbstofflasern (das laseraktive Medium ist flüssig) durch Fritz P. Schäfer und Peter Sorokin (1966). Eine Weiterentwicklung von Kristalltechnologien ermöglichte eine sehr starke Erweiterung des spektralen Nutzbereiches. Durchstimmbare Laser zum Anfahren einer bestimmten Wellenlänge und breitbandige Laser wie z. B. der Titan-Saphir-Laser läuteten in den 1980er Jahren die Ära der Ultrakurzpulslaser mit Pulsdauern von Piko- und Femtosekunden ein.

Die ersten Halbleiterlaser wurden in den 1960er Jahren entwickelt (Robert N. Hall 1962, Nick Holonyak 1962 im sichtbaren Spektralbereich, Nikolai Basow), praktikabel aber erst mit der Entwicklung von Halbleiterlasern auf Basis von Heterostrukturen (Nobelpreis für Herbert Kroemer, Schores Alfjorow). In den späten 1980er Jahren ermöglichte die Halbleitertechnologie immer langlebigere, hocheffektive Halbleiter-Laserdioden, die mit kleiner Leistung in CD- und DVD-Laufwerken oder in Glasfaser-Datennetzen eingesetzt werden und inzwischen nach und nach als Pumpquellen mit Leistungen bis in den kW-Bereich die wenig effektive Lampenanregung von Festkörperlasern ersetzen.

In den 1990er Jahren wurden neue Pumpgeometrien für hohe Laserleistungen verwirklicht, wie der Scheiben- und der Faserlaser. Letztere fanden zur Jahrtausendwende aufgrund der Verfügbarkeit von neuen Fertigungstechniken und Leistungen bis 20 kW zunehmend Anwendungen bei der Materialbearbeitung, bei der sie die bisher gebräuchlichen Typen (CO2-Laser, lampengepumpte Nd:YAG-Laser) teilweise ersetzen können.

Zu Beginn des 21. Jahrhunderts wurden erstmals nichtlineare Effekte ausgenutzt, um Attosekundenpulse im Röntgenbereich zu erzeugen. Damit ließen sich zeitliche Abläufe im Inneren eines Atoms verfolgen. Zuletzt erreichten blaue und ultraviolette Laserdioden die Marktreife.

Inzwischen ist der Laser zu einem bedeutenden Instrument der Industrie, Medizin, Kommunikation, Wissenschaft und Unterhaltungselektronik geworden

Wellenlänge

In der folgenden Tabelle finden sich die Wellenlängen einiger Lasertypen:

Name Lasertyp Wellenlänge Betriebsart Mittlere Leistung
F2-Excimerlaser Gaslaser (Excimer) 152 nm puls einige Watt
ArF-Excimerlaser Gaslaser (Excimer) 192 nm puls einige Watt
KrF-Excimerlaser Gaslaser (Excimer) 248 nm puls einige Watt
XeCl-Excimerlaser Gaslaser (Excimer) 308 nm puls einige Watt
Helium-Cadmium-Laser Gaslaser (Metalldampf) 325 nm - 442 nm cw, puls einige Milliwatt
Stickstofflaser (N2-Laser) Gaslaser 337 nm puls einige 0,1 Watt
Argon-Ionen-Laser Gaslaser 351 - 520 nm cw, puls einige Watt
InGaN-Diodenlaser Halbleiterlaser 370 - 530 nm cw 10 mWatt
Helium-Neon-Laser Gaslaser 633 nm, 1,15 µm - 3,39 µm cw einige Milliwatt
Rubinlaser Festkörperlaser 694,3 nm puls einige Watt
Titan-Saphir-Laser Festkörperlaser 700 nm - 1 µm cw, puls einige Watt
GaAlAs-Diodenlaser Halbleiterlaser 730 - 880 nm cw, puls bis 1 Watt
Nd:YAG-Laser Festkörperlaser 1,064 µm cw, puls einige kW
InGaAsP-Diodenlaser Halbleiterlaser 1,2 - 1,6  µm cw, puls Milliwatt
CO-Laser Gaslaser 4,8 bis 8,3 µm cw, puls 10 Watt
CO2-Laser Gaslaser 10,6 µm cw, puls 10 - 100 kW


[1]


Gefahren

Laser können aufgrund der Eigenschaften ihrer Strahlung und aufgrund ihrer z. T. extrem konzentrierten elektromagnetischen Leistung biologische Schäden verursachen. Daher sind Laser je nach Laserklasse mit genormten Warnhinweisen zu versehen. Dabei werden Bereiche der Wellenlängen und Einwirkzeiten unterschieden, die zu charakteristischen Verletzungen und Verletzungs-Schwellwerten der Leistungs- oder Energiedichte führen.

Anwender und Anlagenbauer müssen direkte, indirekte (unbeabsichtigt gerichtet reflektierte) und Streustrahlung (unbeabsichtigt diffus reflektierte) hinsichtlich dieser Grenzwerte berücksichtigen.

Mögliche Schäden:

Bei der medizinischen Anwendung von Lasern kann es zur Entzündung vorhandener oder gebildeter Gase kommen. Laser im Ultraviolettbereich verursachen neben den genannten Schäden auch fotochemische Veränderungen des Gewebes. Dazu gehören Erscheinungen ähnlich einem Sonnenbrand mit dem Risiko einer Krebsentstehung sowie Trübungen der Hornhaut, der Augenlinse und des Glaskörpers. Bei der Lasermaterialbearbeitung entstehen durch Pyrolyse und Verdampfung teilweise hochgiftige Gase, Stäube und Aerosole, die abgesaugt und gefiltert werden müssen. Laserstrahlen im Nahinfrarot-Bereich (um 1000 nm) oder deren Streustrahlung dringen tief unter die Haut vor und können im Unterhautgewebe schmerzlose, schlecht heilende Verbrennungen verursachen. Verbrennungen im Auge: Bereits bei relativ geringen Leistungen (wenige Milliwatt) einer Wellenlänge, für die das Auge transparent ist (etwa 350 bis 1200 nm) treten im ungeschützten Auge partielle Erblindungen durch Netzhautschäden auf, da der parallele Laserstrahl durch die Augenlinse auf der Netzhaut fokussiert wird. Auch Streustrahlung stärkerer Laser dieses Wellenlängenbereiches ist gefährlich. Schäden werden oft nicht bemerkt, sondern erst vom Augenarzt entdeckt. Verbrennung von Auge und Haut: Treffen Laserstrahlen oder deren Streustrahlung einer Wellenlänge, für die Haut und Hornhaut nicht transparent sind (ab etwa >1400 nm), auf, kommt es bei entsprechender Leistungsdichte zu oberflächlichen Verbrennungen oder Verkohlungen. Die Gefährdung durch Laserstrahlung an Maschinen zur Lasermaterialbearbeitung wird oft nach der Maschinenrichtlinie beurteilt und ergibt auf dem Risikograph meistens die bisherige Kategorie 4 beziehungsweise die Sicherheitsanforderungsstufe 3 (auch Sicherheits-Integritätslevel 3, kurz SIL-3).


Weiterführende Suche


Einzelnachweise

  1. J. Eichler, H.-J. Eichler: Laser, Grundlagen, Systeme, Anwendungen, 2. Auflage, Springer Verlag Berlin Heidelberg GmbH, 1991

Bewertung für diesen Artikel:
0.00
(0 Stimmen)